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ABSTRACT

GUARANTEES IN PROGRAM SYNTHESIS

Qinheping Hu

Under the supervision of Professor Loris D’Antoni

Program synthesis is the classic problem of automatically finding a program in
some search space that satisfies a given correctness specification. Program synthesis
significantly impacts software development because it reduces programmers’ efforts
to produce programs with daunting detail. Unfortunately, it is usually not enough
to produce any correct solution in program synthesis. For many program synthesis
problems, there are multiple correct solutions in the search space, but some of them
are not expected because, for example, their sizes are too large to be read. Besides,
for synthesis problems that admit no solution—we call such synthesis problems
unrealizable—, most of the enumeration-based synthesizers do not terminate.

Therefore, besides correctness and efficiency, one may want to ask two more
questions about a synthesis solver: Can the solver provide a good solution when there
are multiple ones? Can the solver provide a proof when there is no solution? In this
dissertation, we introduce two types of guarantees in program synthesis: quantitative
objectives and proof of unrealizability.

First, we present QSyGuS, a synthesis framework extending syntax-guided
synthesis (SyGuS) with quantitative syntactic objectives, which allow users to
prefer some solutions over others, and an algorithm QuaSi of solving QSyGuS
problems. QuaSi reduces QSyGuS problems to SyGuS problems and solves the
reduced problems by off-the-shelf solvers. Second, we introduce two algorithms
Nope and Nay of proving the unrealizability of SyGuS problems. Nope is based
on the idea of encoding an unrealizable problem as a verification problem. Nay
proves the unrealizability with grammar-flow analysis. Finally, we focus on a
particular kind of quantitative objectives: asymptotic resource usage. We develop a
type-based algorithm SynPlexity for solving synthesis problems with asymptotic
resource usage.
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Chapter 1

Introduction

In the typical programming paradigm, programmers tell machines what to do via
line-by-line codes. For example, if the programmer wants to write the max2 function,
she must first know the intent of max2—computing the maximum integers given
two integers as input. Then, she needs to write the problem line-by-line. Here is a
possible implementation she will write:

if x > y then x else y.

To determine if the program is correct, the programmer may also test the program
with some test cases. For example, the test cases for the max2 function can be
{(1, 2) 7→ 2, (3, 2) 7→ 3}, that is, the output should be 2 when the input is (1, 2) and
the output should be 3 when the input is (3, 2).

In the above example, coding is not that hard; hence we do not need to worry
about debugging. However, in tasks more complicated than max2, coding and
debugging can be tedious and error-prone for programmers. So a question then
arises, "We have the intents of desired programs. We also have the test cases. Can
we bypass the tedious work of coding and debugging with the intent and test
cases?" The answer to this question is program synthesis [PR89]—the technique of
automatically finding programs that meet user intent.

In program synthesis, users tell machines what they want via user intent de-
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scribed by a variety of specifications, e.g., test cases [Gul16, Gul11], logical predicates
[ABJ+13], traces [DSS16, HSSD19], natural language [DGH+16, GM14, LGS13],
and partial programs [SL08]. The goal of a program synthesizer is to find a pro-
gram from a given search space that satisfies the specifications. The graph shown in
Fig. 1.1 illustrates the setting of a typical program synthesizer.

Synthesizer

Specification

Search space

Quantitative objective

Solution

Proof that no program 
meets the specification

Figure 1.1: Program synthesizer.

For the max2 example, the specification can be described by the following predi-
cate:

∀x,y. max2(x,y) > x∧ max2(x,y) > y∧ (max2(x,y) = x∨ max2(x,y) = y),

or the test cases we have seen above. The search space can be the language (de-
scribed by the grammar shown in Fig. 1.2) consisting of all programs built from +,
if-then-else, Boolean operators, constants, and variables. With these specification
and search space, a program synthesizer can automatically find an implementation
of max2; and hence the programmer does not need to code and debug by herself.
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Start ::= Start + Start
| if BExpr then Start else Start
| x | y | 0 | 1

BExpr ::= Start > Start
| ¬BExpr
| BExpr ∧ BExpr

Figure 1.2: Grammar that describes the search space of the max2 problem.

1.1 When does Program Synthesis Fall Short of
Expectations?

Program synthesis benefits software development in the sense that it significantly re-
duce the workload of producing programs that have concise intuition but daunting
details, and it also support programming-by-intent for non-expert users. Unfor-
tunately, a major inherent challenge in program synthesis restricts it from being
used more widely: the user intent that describes the behavior of the synthesized
program is usually ambiguous. There can be multiple programs that are correct
with respect to user intent; synthesizers are usually unpredictable and can return
any of them as a solution. However, an arbitrary correct program is not enough
when the user expects a program, for example, with small size, high likelihood , or
small complexity. The diagram shown in Fig. 1.3 illustrates the relation between
the search space and the space of correct programs in synthesis problems. The
intersection is the space of solutions. When there are multiple programs in the
intersection, a synthesizer can return any of them as the solution.

For example, even with the full specification, a synthesizer may still find the
following implementation of max2

if x > y then (if x > 0 then x else x) else y.

This implementation is also correct, but contains a redundant if-then-else
operator—the inner one. One can see from this example implementation that a sim-
ilar implementation can contain an arbitrary number of redundant if-then-else
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Search space

Correct programs

All programs

Figure 1.3: The search space of synthesis problems intersects with correct programs
with respect to the specification. The gray part represent the space of solutions.

and still be correct. A program with too many redundant if-then-else will be
unreadable and, of course, is not expected by the user.

Besides the cases where there are multiple solutions, program synthesis can
also fall short of expectations when there is no solution—we call synthesis problems
admitting no solutions unrealizable problems. It can happen for several reasons:
specifications provided by users are buggy, or the search space is too restricted. An
enumeration-based synthesizer will try to enumerate all candidates in the search
space on an unrealizable synthesis problem with an infinite search space and never
terminate. The diagram in Fig. 1.4 illustrates that the search space and the space of
correct programs are disjoint in unrealizable synthesis problems.

To construct an example of unrealizable synthesis problems, we change the
search space of the max2 problem to the language described by the grammar shown
in Fig. 1.5. Note that this new grammar produces only linear terms, which can not
express the max2 function! Therefore there is no solution in the search space; and
this synthesis problem is unrealizable.
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Search space

Correct programs

All programs

Figure 1.4: Unrealizable synthesis problems.

Start ::= Start + Start | x | y | 0 | 1

Figure 1.5: Grammar for linear terms.

1.2 Guarantees in Program Synthesis

This dissertation proposes two approaches to address the two drawbacks intro-
duced in the previous section. The first one is quantitative objectives, which extend
the correctness specifications to more syntactic or semantic characterizations of
programs, e.g., the sizes of programs, the likelihood of programs, and the com-
plexity of programs. Quantitative objective allows users to prefer one solution
over another and ask the synthesizer to return the best one. The other one is to
prove the unrealizability of synthesis problems. We call these two approaches guar-
antees in program synthesis because they provide guarantees about what solution
is returned if multiple ones exist or why there is no solution, and make program
synthesizers more predictable and reliable. The graph shown in Fig. 1.6 illustrates
synthesizers with guarantees. The two boxed items are the guarantees proposed
by this dissertation.

In this section, we will first introduce two kinds of quantitative objectives and
then discuss the ability of synthesizers to prove unrealizability.
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Synthesizer

Specification

Search space

Quantitative objective

Solution

Proof that no program 
meets the specification

Figure 1.6: Program synthesis with guarantees.

Quantitative Syntactic Objectives

In program synthesis, besides correctness, users may also care about some syntactic
characterizations of solutions. Quantitative syntactic objectives are a constraint on
the syntactic of solutions, which allow users to express such beyond-the-correctness
intent. For example, let us consider three implementations of max2 functions.

max21(x,y) = x

max22(x,y) = if x > y then (if x > 0 then x else x) else y
max23(x,y) = if x > y then x else y

The first implementationmax21 does not satisfy the correctness specification
and hence is incorrect. The implementations max22 and max23 are both correct,
and even semantically equivalent. However, they are syntactically different, i.e., the
second if-then-else operator inmax22 is redundant. If a user wants a solution
with no more than one if-then-else operator to avoid redundant conditionals,
she can specify such intent with a quantitative syntactic objective #if(P) < 2, which
states that the number of if-then-else operators in a solution P is less than 2. Such
quantitative objectives are commonly needed for program-synthesis techniques
that tend to build decision trees as solutions, such as the state-of-the-art synthesizer
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CVC4-SyGuS [ARU17a, RDK+15] to avoid returning a lookup table over the input
domain as a solution.

Besides the number of occurrences of a specified operator, the size of programs,
the likelihood of programs, and their composition can also be expressed as quanti-
tative syntactic objectives. The size of a program can be computed by summing
up the numbers of all operators. The likelihood of a program with respect to some
given distribution can be computed as the product of the likelihood of all operators
in the program.

Finally, users can also specify optimizing objectives—the solutions must be
optimal with respect to some given metric. In the example above, a user may want an
implementation of the max2 function that contains the least number of if-then-else
operators. In such a case, the quantitative syntactic objectiveminimize #if(P) can
be used to express the intent. Note that when optimizing objectives are present,
a synthesizer needs to find not only a solution, but also a proof showing that
the solution is optimal. Such additional requirements motivated us to study the
problem of proving unrealizability, which we will discuss later in §1.2.

Quantitative Semantic Objectives

Similar to quantitative syntactic objectives, quantitative semantic objectives are
also used to prefer some solutions over others. Quantitative semantic objectives
specify the expected quantitative semantic characterizations of solutions in program-
synthesis problems. In this dissertation, we focus on a particular kind of quanti-
tative semantic objective, the resource usage bounds of programs. We take time
complexity as an example to illustrate program synthesis with resource usage
bounds.

prodlin = λx.λy.if x == 0 then x else (plus y (prodlin (dec x) y)) (1.1)

The program prodlin shown in Eqn. (1.1) computes the product of two non-
negative integers x and y, where plus (summing up two integers) and dec (de-
creasing an integer by one) are auxiliary functions. This implementation is correct
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but inefficient. Let us count each call to an auxiliary function as one step; and let
T(x) denote the number of steps in which the program runs with input x. The im-
plementation in Eqn. (1.1) runs in Θ(x) steps because T(x) satisfies the recurrence
T(x) = T(x− 1) + 2, implying T(x) ∈ Θ(x). That is prodlin runs in a linear number
of steps with respect to x.

With the quantitative semantic objective prod : 〈O(log x)〉, one can specify that
the synthesized implementation of prod should run in O(log x) steps. Here is an
example of an implementation of prod that runs in a logarithmic number of steps.

prod = λx. λy. if x == 0 then x else (1.2)

if even x then double (prod (div2 x) y)

else plus y (double (prod (div2 x) y))

There are two motivations resource-usage bounds as quantitative semantic
objectives. First, users usually want efficient program implementations instead of
inefficient ones. Resource bounds can rule out those inefficient solutions. Second,
with the insight that the solution should be a divide-and-conquer implementation
with logarithmic complexity, a resource-usage bound can be used to guide the
search and rule out all implementations with linear complexity.

Proving Unrealizability of Synthesis Problems

In program synthesis, the space of all candidate programs is called the search space.
The goal of a synthesis problem is, given the correctness specification and the search
space, to find a program in the search space such that the program satisfies the
specification; we say such a synthesis problem is realizable—it admits a solution.
However, there are also cases where there is no program satisfying the specification
in the search space; we say such problems unrealizable.

The max2 problem with the grammar shown in Fig. 1.5 is an example of an
unrealizable synthesis problem. We observe that all candidates in the search space
are linear terms and can be written as axby + c for some constants a, b, and c.
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However, any implementation of the max2 function should be non-linear in the
sense that it should output x when the input x is greater (or equal) than y, and
output y otherwise. Therefore, the synthesis problem admits no solution in the
search space, and hence is unrealizable.

The ability to prove unrealizability will provide users with more information.
Suppose that a user is synthesizing a complicated problem with a synthesizer that
has no ability to prove unrealizability. If the problem is realizable and the user
waits for the synthesizer for a long enough time, the synthesizer will eventually
return a solution. However, if the problem is unrealizable, no matter how long the
user waits, she does not know whether the cause is that the problem is unrealizable,
or the solving time is not long enough.

In addition, the ability to prove unrealizability provides the ability to prove
that a solution is optimal. To show that a solution P of some synthesis problem is
optimal, it is sufficient to show that there is no program better than P in the search
space. For any program P in the search space, let the synthesis problem Sy>P be
the problem of finding a better program than P. The optimality of program P is
implied by Sy>P being unrealizable.

While many solvers can now efficiently find solutions when they exist, there
has been effectively no prior work on proving that a given synthesis problem is
unrealizable. A key property of the previous example is that the grammar is
infinite. When such a synthesis problem is realizable, any search technique that
systematically explores the infinite search space of possible programs will eventually
identify a solution to the synthesis problem. In contrast, proving that a problem
is unrealizable requires showing that every program in the infinite search space
fails to satisfy the specification. This problem is in general undecidable [CRST15].
Although we cannot hope to have an algorithm for establishing unrealizability, the
challenge is to find a technique that succeeds for the kinds of problems encountered
in practice.



10

1.3 Contributions and Outline

This dissertation aims to demonstrate that providing guarantees in program synthe-
sis is an effective way of improving the reliability and availability of synthesizers.
The remainder of this dissertation is arranged into five chapters.

Chapter 2 presents the formalization of quantitative syntactic objectives in syn-
thesis program with search spaces described by tree grammars. The formalization
is based on weighted grammars, and can be instantiated to a popular synthesis
framework: syntax-guided synthesis. We also introduce a meta-algorithm for
solving synthesis problems with quantitative syntactic objectives, including both
constraint objectives and optimizing objectives. Note that, in our algorithm, the
proof of a solution being optimal is reduced to the proof of the unrealizability of a
particular synthesis problem, which motivates the study of proving unrealizability
introduced in the following chapter.

In Chapter 3, we introduce two algorithms for proving the unrealizability of
synthesis problems. One is a meta-algorithm reducing the problem of proving
unrealizability to the program-verification problem. The second algorithm is a
domain-specific algorithm for proving the unrealizability of synthesis problems
within linear-integer-arithmetic. The meta-algorithm is more general but undecid-
able, while the second algorithm provides us with a decision procedure to decide
the unrealizability of a particular family of synthesis problems.

Chapter 4 presents the formalization of a particular kind of quantitative seman-
tic objective in synthesis problems with specifications as liquid types: asymptotic
resource bounds of synthesized programs. We also introduce a type-guided algo-
rithm for solving synthesis problems with asymptotic resource bounds.

In Chapters 5 and 6, we discuss the relationship of the techniques introduced in
this dissertation to the rich variety of existing works and provide some directions
for future work.



Part I

Quantitative Syntactic Objectives in
Synthesis

11
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In program synthesis, besides correctness, users may also care about some
syntactic characterizations of solutions. Quantitative syntactic objectives are a con-
straint on the syntactic characteristics of solutions, which allow users to express
such beyond-just-correctness intent. Quantitative objectives can be used to spec-
ify the number of occurrences of a specified operator, the size of programs, the
likelihood of programs, and their composition.

Quantitative objectives include constraint objectives and optimizing objectives.
Constraint objectives ask the solutions of synthesis problems to have weights sat-
isfying given constraints. Optimizing quantitative objectives ask the solutions of
synthesis problems to be optimal with respect to some specified metric. Note that
when optimizing objectives are present, a synthesizer needs to find not only a
solution but also a proof that shows that the solution is optimal.

In Chapter 2, we introduce the formalization of quantitative syntactic objectives
based on tree grammars and the meta-algorithm of solving synthesis problems
with quantitative syntactic objectives. The algorithm can solve both constraint
objectives and optimizing objectives. The proof of a solution being optimal in
solving optimizing objectives is reduced to the proof of unrealizability in our
algorithm. So we also study the problem of proving unrealizability in this part.

In Chapter 3, we introduce a meta-algorithm for proving unrealizability of
synthesis problems, and a domain-specific algorithm for proving unrealizability of
synthesis problems based on tree grammars.

In this part, we focus on syntax-guided synthesis problems (SyGuS)— a pop-
ular framework that unifies a large family of synthesis problems. However, the
algorithms we introduce can be generalized to synthesis problems with search
spaces described by tree grammars beyond SyGuS.
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Chapter 2

Syntax-Guided Synthesis with
Quantitative Syntactic Objectives

2.1 Introduction

The goal of program synthesis is to find a program in some search space that
meets a specification—e.g., a set of examples or a logical formula. Recently, a
large family of synthesis problems has been unified into a framework called syntax-
guided synthesis (SyGuS). A SyGuS problem is specified by a context-free grammar
describing the search space of programs, and a logical formula describing the
specification. Many synthesizers now support this format [ABJ+13] and annually
compete in synthesis competitions [AFSSL16b]. Thanks to these competitions,
these solvers are now quite mature and are finding wide application [HD17].

While the logical specification mechanism provided by SyGuS is powerful,
it can only capture the functional requirements of the synthesis problem—e.g.,
the program should perform correctly on a given set of input/output examples.
When multiple possible programs can satisfy the specification, SyGuS does not
provide a way to prefer one to the other—e.g., one cannot ask a solver to return the
program with the fewest if-statements. As a consequence, existing synthesis tools
do not provide guarantees about what solution is returned if multiple ones exist.
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While a few synthesizers have attempted to include some form of specification
to express this kind of quantitative intents [BTGC16, SG15, NDAFH17, KRKK17],
these approaches are domain-specific, do not apply to SyGuS problems, and do
not provide a simple and flexible specification mechanism. The lack of a formal
treatment of quantitative requirements stands in the way of designing synthesizers
that can take advantage quantitative of objectives to perform more efficient forms
of synthesis.

In this chapter, we propose QSyGuS, a unifying framework for describing syntax-
guided synthesis problems with quantitative objectives over the syntax of the
synthesized programs—e.g., find the most likely program with respect to a given
probability distribution—and present an algorithm for solving synthesis problems
expressed in this framework. We focus on syntactic objectives because they are the
most common ones in practical applications of program synthesis. For example, in
programming by examples, it is desirable to produce small programs with fewer
constants because these programs are more likely to generalize to examples outside
of the specification [Gul16]. QSyGuS extends SyGuS in two ways. First, in QSyGuS
the search space is represented using weighted grammars, which augment context-
free grammars with the ability to assign weights to programs. Second, QSyGuS
allows the user to specify constraints over the weight of the program, including
optimization objectives—e.g., find the program with the fewest if-statements and
with the lowest depth.

QSyGuS is a natural, general, and flexible formalism and is grounded in the
well-studied theory of weighted grammars. We leverage this theory and design
an algorithm for solving QSyGuS problems using closure properties of weighted
grammars. Given a QSyGuS problem, our algorithm generates a SyGuS problem
that can be delegated to existing SyGuS solvers. The algorithm then iteratively
refines the solution returned by the SyGuS solver to find an optimal one by further
generating new SyGuS instances using weighted grammar operations. We imple-
ment our algorithm in a tool, QuaSi, and evaluate it on 26 quantitative extensions
of existing SyGuS benchmarks. QuaSi can synthesize optimal solutions in 15/26
benchmarks with times comparable to those needed to find a solution that does
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not need to satisfy any quantitative objective.
In this chapter, we introduce

• QSyGuS, a formal framework grounded in the theory of weighted gram-
mars that can describe syntax-guided synthesis problems with quantitative
objectives over the syntax of the synthesized programs. (§ 2.3)

• An algorithm for solving QSyGuS problems that leverages closure properties
of weighted grammars and existing SyGuS solvers. (§ 2.4)

• QuaSi, a tool for specifying and solving QSyGuS problems that interfaces
with existing SyGuS solvers and a comprehensive evaluation of QuaSi, which
shows that QuaSi can efficiently solve QSyGuS problems over different types
of weights, including additive weights, probabilities, and combinations of
multiple weights. (§ 2.5)

2.2 Illustrative Example

In this section, we illustrate the main components of our framework using an
example. We start with a Syntax-Guided Synthesis (SyGuS) problem in which no
quantitative objective is provided. We recall that the goal of a SyGuS problem is to
synthesize a function f of a given type that is accepted by a context-free grammar
G, and such that ∀x.φ(f, x) holds (for a given Boolean constraint φ).

The following SyGuS problem asks to synthesize a function that is accepted by
the following grammar and that computes the max of two numbers. The semantic

Start ::= Start + Start | if(BExpr) then Start else Start | x | y | 0 | 1
BExpr ::= Start > Start | ¬BExpr | BExpr ∧ BExpr

Figure 2.1: Grammar of conditional linear terms.



16

constraint is given by the following formula.

ψ(f)
def
= ∀x,y.f(x,y) > x∧ f(x,y) > y∧ (f(x,y) = x∨ f(x,y) = y)

The following three programs are semantically equivalent, but syntactically different
solutions.

max1(x,y) = if(x > y) then x else y
max2(x,y) = if(x > y) then (x+ 0) else (y+ 0)
max3(x,y) = if(x > y) then x else (if(y > x) then y else x)

All solutions are correct, but the user might, for example, prefer the smallest
one. However, SyGuS does not provide ways to specify this quantitative intent.

Adding weights. In our formalism, QSyGuS, we augment context-free grammars to
assign weights to programs in the search space. Concretely, we adopt weighted
grammars [DKV09], a well-studied formalism with many desirable properties.
In a weighted grammar, each production is assigned a weight. For example, the
weighted grammar shown in Figure 2.2 extends the one from the previous SyGuS
example to assign to each program p a pair of weights (w1,w2) where w1 is the
number of if-statements andw2 is the number of plus operators in p. In this case, the
weights are pairs of integers and the weight of a grammar derivation is the pairwise
sum of all the weights of the productions involved in the derivation—e.g., the sum
of (w1,w2) and (w ′1,w ′2) is (w1 +w

′
1,w2 +w

′
2). In the figure, we write /(w1,w2) to

assign weight (w ′1,w ′2) to a production. We omit the weight for productions with
cost (0, 0). The functionsmax1,max2 andmax3 have weights (1, 0), (1, 2), and (2, 0)
respectively.

Adding and solving quantitative objectives. Once we have a way to assign weights to pro-
grams, QSyGuS allows the user to specify quantitative objectives over the weights of
the productions—e.g., only allow solutions with fewer than 4 if-statements. In our
example, we could require the solution to be minimal with respect to the number
of if-statements, i.e., minimize the first component of the paired weight. With these
constraints, bothmax1 andmax2 would be considered optimal solutions because
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Start ::= Start + Start/(0, 1)
| if(BExpr) then Start else Start/(1, 0)
| x | y | 0 | 1

BExpr ::= Start > Start
| ¬BExpr
| BExpr ∧ BExpr

Figure 2.2: Weighted grammar that assigns weight (w1,w2) ∈ Nat×Nat to a program
where w1 is the number of if-statements and w2 is the number of plus-statements.

there exists no solution with 0 if-statements. If we require the solution to also be
minimal with respect to the second component of the paired weight, max1 will be
a possible optimal solution.

Our tool QuaSi can automatically discover solutions in both of these cases. Let’s
consider the last minimization objective. In this case, QuaSi first uses existing
SyGuS solvers to synthesize an initial solution using the non-weighted version of
the grammar. Let’s say that the returned solution is, for example,max3 of weight
(2, 0). QuaSi uses this solution to build a new SyGuS instance that only accepts
programs with at most one if-statement. Solving this SyGuS problem can, for
example, result in the programmax2 of weight (1, 2), which will require our solver
to build yet another SyGuS instance. This approach is repeated and if it terminates,
an optimal program is found.

2.3 SyGuS with Quantitative Objectives

In this section, we introduce our framework for defining syntax-guided synthesis
problems with quantitative objectives over the syntax of the synthesized programs.
We first provide preliminary definitions for notions such as semirings and weighted
tree grammars, and then use these notions to augment SyGuS problems with
quantitative objectives.
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Weights over Semirings

We now define the universe of weights we will assign to programs. In general,
weights are defined using monoids—i.e., sets equipped with an addition operator—
but when a grammar is nondeterministic—i.e., it can produce the same term using
multiple derivations—the same term might be assigned multiple weights. Hence,
we choose to use semirings. Since we also care about optimization objectives, we
assume all our semirings are equipped with a partial order.

Definition 2.1 (Semiring). A (ordered) semiring is a pair (S,�) where

1. S = (S,⊕,⊗, 0, 1) is an algebra consisting of a commutative monoid (S,⊕, 0) and
a monoid (S,⊗, 1) such that ⊗ distributes over ⊕, 0 6= 1, and, for every x ∈ S,
x⊗ 0 = 0,

2. � ⊂ S× S is a partial order over S.

We often use the word semiring to refer to just the algebra S.

Example 2.2. In this dissertation, we focus on semirings with the following algebras.

Boolean Bool = (B,∨,∧, 0, 1). This semiring only contains the values true and false
and is used to represent non-quantitative problems.

Tropical Trop = (Z ∪ {∞}, min,+,∞, 0). This semiring is the most common one and is
used to assign additive weights—e.g., term sizes and term depth.

Probabilistic 1 Prob = (R,+, ·, 0, 1). This semiring is used to assign probabilities to
terms in a grammar.

In our framework, we allow synthesis problems to have multiple objectives.
Hence, we define a product operation to compose semirings. Intuitively, the fol-
lowing operation composes algebras of semirings to create a pair and applies the

1When the grammar of a synthesis problem is assigned cost only in the range [0, 1] and is
unambiguous, the weight of terms produced by the grammar is also in the range [0, 1]. And hence
this semiring can be used to represented probabilities of programs.
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operation of each algebra to the corresponding projections of the pair. Similarly,
two orders can be composed to create an order over pairs of elements. We propose
two such compositions, one that assigns equal weights to the two orders (Pareto)
and one that prefers one order over the other (Sorted).

Definition 2.3 (Products). Given S1=(S1,⊕1,⊗1, 01, 11) and S2=(S2,⊕2,⊗2, 02, 12),
the product algebra is the tuple S1×SS2=(S1 × S2,⊕,⊗, (01, 02), (11, 12)) such that for
every x1, x2 ∈ S1 and y1,y2 ∈ S2, we have (x1,y1)⊕ (x2,y2)

def
= (x1 ⊕1 x2,y1 ⊕2 y2) and

(x1,y1)⊗ (x2,y2)
def
= (x1 ⊗1 x2,y1 ⊗2 y2).

Given two partial orders �1⊂ S1 × S1 and �2⊂ S2 × S2, the Pareto product of the
two orders is defined as the partial order �p= par(�1,�2) ⊆ (S1 × S2)× (S1 × S2) such
that, for every x1, x2 ∈ S1 and y1,y2 ∈ S2, we have (x1,y1) �p (x2,y2) iff x1 �1 x2 and
y1 �2 y2.

Given two partial orders �1⊂ S1 × S1 and �2⊂ S2 × S2, the Sorted product of the
two orders is defined as the partial order �s= sort(�1,�2) ⊆ (S1 × S2)× (S1 × S2) such
that, for every x1, x2 ∈ S1 and y1,y2 ∈ S2, we have (x1,y1) �s (x2,y2) iff x1 �1 x2 or
(x1 = x2 and y1 �2 y2).

Example 2.4. The weights in the grammar in Figure 2.2 are from the product semiring
Trop×S Trop. When using the Pareto partial orders, we have, for example, (1, 0) � (2, 0)
and (1, 0) � (1, 2), but (1, 2) is incomparable to (2, 0). When using the Sorted product, we
have, for example, (1, 0) � (1, 2) � (2, 0).

Weighted Tree Grammars

Since SyGuS defines search spaces using context-free grammars, we propose to
extend this formalism with weights to assign costs to terms in the grammar. We
focus our attention on a restricted class of context-free grammars called regular
tree grammars—i.e., grammars generating regular tree languages—because, to
our knowledge, the benchmarks appearing in the SyGuS competition [AFSSL16a]
and in practical applications of SyGuS operate over tree grammars. Moreover, it
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was recently shown that SyGuS problems that are undecidable for context-free
grammars become decidable with weighted tree grammars [CRST15].

Trees. A ranked alphabet is a tuple (Σ, rkΣ) where Σ is a finite set of symbols and
rkΣ : Σ → N associates a rank to each symbol. For every m > 0, the set of all
symbols in Σ with rankm is denoted by Σ(m). In our examples, a ranked alphabet
is specified by showing the set Σ and attaching the respective rank to every symbol
as a superscript—e.g., Σ = {+(2), c(0)}. We use TΣ to denote the set of all (ranked)
trees over Σ—i.e., TΣ is the smallest set such that (i) Σ(0) ⊆ TΣ, (ii) if σ ∈ Σ(k) and
t1, . . . , tk ∈ TΣ, then σ(t1, · · · , tk) ∈ TΣ. In the following, we assume a fixed ranked
alphabet (Σ, rkΣ).

Weighted Tree Grammars. Tree grammars are similar to word grammars but they
generate ranked trees instead of words. Weighted tree grammars augment tree
grammars by assigning to each tree a weight from a semiring. They do so by
associating weights to productions in the grammar. Weighted grammars can, for
example, compute the height of a tree, the number of occurrences of some node
in the tree, or the probability of a tree with respect to some distribution. In the
following, we assume a fixed semiring (S,�) where S = (S,⊕,⊗, 0, 1).

Definition 2.5 (Weighted Tree Grammar). A weighted tree grammar (WTG) is a
tuple G = (N,Z,P,µ), where N is a set of non-terminal symbols with arity 0, Z is an
axiom with Z ∈ N, P is a set of production rules of the form A → β where A ∈ N is a
non-terminal and β is a tree of T(Σ ∪N), and µ : P → S is a function assigning to each
production a weight from the semiring.

We can now define the semantics of a WTG as a function wG : TΣ 7→ S, which as-
signs a weight to each tree. Intuitively, the weight of a tree is⊕-sum of the weight of
every possible derivation of that tree in the grammar, and the weight of a derivation
is the ⊗-product of the weights of the productions appearing in the derivation. We
useMS(β) = 〈X1, . . . ,Xk〉 to denote the multi-set of all nonterminals appearing in
β and β[t1/X1, . . . , tk/Xk] to denote the result of simultaneously substituting each
Xi with ti in β. Given a derivation p = A → β such that MS(β) = 〈X1, . . . ,Xk〉,
we assume that p is a symbol of arity k. A derivation d starting at non-terminal
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X is a tree of productions d ∈ T(P) representing one possible way to derive a tree
starting from X. The derivation has to be such that: (i) the root of d is a production
of the form X → β, (ii) for every node p = A → β in d, if MS(β) = 〈X1, . . . ,Xk〉,
then, for every 1 6 i 6 k, the i-th child of p is a production Xi → βi. Given
a derivation d with root p = X → β, such that MS(β) = 〈X1, . . . ,Xk〉 and p
has children subtrees d1, . . . ,dk, the tree generated by d is recursively defined as
tree(d) = β[tree(d1)/X1, . . . , tree(dk)/Xk]. We use der(X, t) to denote the set of all
derivations d starting at X, such that tree(d) = t. The weight dw(d) of a derivation
d is the ⊗-product of the weights of the productions appearing in the derivation.
Finally, the weight of a tree t is the ⊕-sum of the weights of all the derivations of
t from the initial nonterminal wG(t) =

⊕
d∈der(Z,t) dw(d). A weighted tree gram-

mar is unambiguous iff, for every t ∈ TΣ, there exists at most one derivation—i.e.,
|der(Z, t)| 6 1.

Weighted tree grammars generalize weighted tree automata. In particular, a
weighted tree automaton (WTA) is a WTG in which every production is of the form
A→ σ(T1, . . . , Tn), whereA ∈ N, each Ti ∈ N, and σ ∈ Σ(n). Finally, a tree automaton
(TA) is a WTA over the Boolean semiring—i.e., the TA accepts all trees with some
derivations yielding true. Similarly, a tree grammar (TG) is a WTG over the Boolean
semiring. Given a TA (resp. TG) G, we use L(G) to denote the set of trees accepted
by G—i.e., L(G) = {t | wG(t) = true}.

Example 2.6. The weighted grammar in Fig. 2.2 operates over the semiring Trop× Trop,
N = {Start, BExpr}, Z = Start, P contains 9 productions, and µ assigns non-zero weights
to two of the productions.

Aside from being a natural formalism for assigning weights to trees, TGs and
WTGs enjoy properties that make them a good choice for our model. First, WTGs
(resp. TGs) are equi-expressive to WTAs (resp. TAs) and have logical character-
izations [CDG+07, DV06, DKV09]. Due to this reason, tree grammars are closed
under Boolean operations and enjoy decidable equivalence [CDG+07]. Second,
WTGs enjoy many closure and decidability properties—e.g., given two WTGs G1

and G2, we can compute the grammars G1 ⊕G2 and G1 ⊗G2 such that, for every f,
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wG1⊕G2(f) = wG1(f)⊕ wG2(f) and wG1⊗G2(f) = wG1(f)⊗ wG2(f). This operation is
convenient for building grammars over product semirings.

QSyGuS

In this section, we formally define QSyGuS, which extends SyGuS with quantitative
objectives. In SyGuS a problem is specified with respect to a background theory
T—e.g., linear arithmetic—and the goal is to synthesize a function f that satisfies
two constraints provided by the user. The first constraint describes a functional
semantic property that f should satisfy and is given as a predicate ψ(f) def

= ∀x.φ(f, x).
The second constraint limits the search space S of f and is given as a set of expressions
specified by a context-free grammar G defining a subset of all the terms in T . A
solution to the SyGuS problem is an expression e in S such that the formula ψ(e) is
valid.

We augment such a framework in two ways. First, we replace context free
grammars with WTGs, which we use to assign weights (from a given semiring)
to terms. Second, we augment the problem formulation with constraints over the
weight of the synthesized program—i.e., only consider programs of weight greater
than 2—and optimization objectives over the same weight—i.e., find the solution
of minimal weight. Weight constraints range over the grammar

WC :=WC∧WC |WC∨WC | ¬WC | w � s | s � w | w ≺ s | s ≺ w,

wherew is a special variable and s is an element of the semiring under consideration.
Given a constraintω ∈WC, we writeω(t) to denote the term obtained by replacing
wwith t inω.

Definition 2.7 (QSyGuS). A QSyGuS problem is a tuple
(T , (S,�),ψ(f),G,ω,opt) where:

• T is a background theory.

• (S,�) is an ordered semiring defining the set of weights and their operations.
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• G is a weighted tree grammar with weights over the semiring S and that only contains
terms in T—i.e., L(G) ⊆ T .

• ψ(f)
def
= ∀x.φ(f, x) is a Boolean formula constraining the semantic behavior of the

synthesized program f.

• ω ∈WC is a set of constraints over the weight w of the synthesized program.

• opt is a Boolean denoting whether the solution has to have minimal weight with
respect to �.

A solution to the QSyGuS problem is a term e such that e ∈ L(G), ψ(e) is true, and
ω(wG(e)) is true. If opt is true, we also require that there is no g that satisfies the previous
conditions such thatω(wG(g)) ≺ ω(wG(e)).

A SyGuS problem is a QSyGuS problem without weight constraints—i.e.,ω ≡
true and opt = false. We denote such problems just as triples (T ,ψ(f),G).

Example 2.8. Consider the QSyGuS problem described in Section. 2.2. We already de-
scribed all the components except ω and opt earlier in this section. In this example,
ω = true and opt = true because we want to synthesize the solution with minimal
weight.

2.4 Solving QSyGuS Problems via Grammar
Reduction

In this section, we present an algorithm for solving QSyGuS problems (Algorithm 1),
which works as follows. First, given a QSyGuS problem, we construct (under certain
assumptions) a SyGuS problem for which the solution is guaranteed to satisfy the
weight constraints ω (line 2) and use existing SyGuS solvers to find a solution
to such a problem (line 3). If the QSyGuS problem requires minimization, our
algorithm produces a new SyGuS instance to search for a solution that is better
than the previously found one and tries to solve it (lines 6-7). This procedure is
repeated until an optimal solution is found (line 8).
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Function :QSyGuS-solve(T , S,ψ,G,ω,opt)
G ′ ← ReduceGrammar(G,ω) // extract grammar satisfyingω;
f∗ ← SyGuS(T ,ψ,G ′) // solve corresponding SyGuS problem;
if opt = false then

return f∗
end
while true do

G ′ ← ReduceGrammar(G ′,w ≺ wG(f∗));
f← SyGuS(T ,ψ,G ′) // Try to find better solution;
if f = ⊥ then

return f∗ // Return the optimal solution
end
f∗ ← f;

end
Algorithm 1: QSyGuS synthesis algorithm

From QSyGuS to SyGuS

The first step of our algorithm is to construct a SyGuS problem characterizing
exactly all the solutions of the QSyGuS problem that satisfy the weight constraints.
Given a QSyGuS problem P = (T , (S,�),ψ(f),G,ω,opt), we construct a SyGuS
problem P ′ = (T ,ψ(f),G ′) such that a function g is a solution to the SyGuS problem
P ′ iff g is a solution of P = (T , (S,�),ψ(f),G,ω, false), where the optimization
constraint has been dropped. We denote the grammar-reduction operation as
G ′ ← ReduceGrammar(G,ω).

Base case. First we show how to solve the problem whenω is an atomic formula—i.e.
of the form w � s, s � w, w ≺ s, or s ≺ w. We start by showing how to solve the
problem for w � s as the construction is identical for the other constraints.

Concretely, we are given a WTG G = (N,Z,P,µ) and we want to construct a TG
G�s = (N ′,Z ′,P ′) such that t ∈ L(G�s) iff wG(t) � s. In general, it is not possible
to perform this construction for arbitrary semirings and grammars. We first present
our algorithm and then describe sufficient conditions under which we can ensure
termination and correctness.

The idea behind our construction is to introduce new nonterminals in the gram-
mar G�s to keep track of the weight of the trees that can be produced from those
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nonterminals. For example, a nonterminal pair (X, s ′) will derive all trees derivable
from X using a single derivation of weight s ′. Therefore, the set of nonterminals
N ′ is a subset of N× S (plus an initial nonterminal Z ′), where S is the universe of
the WTG’s semiring. We construct our set of nonterminals N ′ starting from the
leaf productions of G and then recursively explore other productions. At the same
time we generate the set of productions P ′. Formally, N ′ and P ′ are the smallest
sets such that the following conditions hold.

1. Z ′ ∈ N ′ (the initial nonterminal).

2. For every production p ∈ P such that p = (A → β) and β ∈ TΣ—i.e., p is a
leaf—and µ(p) � s, then (A,µ(p)) ∈ N ′ and ((A,µ(p))→ β) ∈ P ′. If A = Z,
then Z ′ → (A,µ(p)) ∈ P ′.

3. For every production p ∈ P such that p = (A → β), MS(β) = 〈X1, . . . ,Xk〉,
(X1, s1), . . . , (Xk, sk) ∈ N ′ (for some values si ∈ S), and µ(p)⊗s1⊗. . .⊗sk = s ′,
s ′ � s, then (A, s ′) ∈ N ′, and ((A, s ′)→ β[(X1, s1)/X1, . . . , (Xk, sk)/Xk]) ∈ P ′.
If A = Z, then Z ′ → (A, s ′) ∈ P ′.

Example 2.9. We illustrate our construction using the grammar in Figure 2.2 . Assume the
weight constraint is w � (1, 0) and the partial order is built using a Pareto product—i.e.,
we accept terms with 1 or less if-statements and no plus-statements. Our construction
yields the following grammar.

Z’ ::= (Start,1,0) | (Start,0,0)
(Start,1,0) ::= if((BExpr,0,0)) then (Start,0,0) else (Start,0,0) | x | y | 0 | 1
(Start,0,0) ::= x | y | 0 | 1

(BExpr,0,0) ::= (Start,0,0) > (Start,0,0) | ¬(BExpr,0,0) | (BExpr,0,0) ∧ (BExpr,0,0)

The construction of G�s only terminates for certain semirings and grammars,
and only guarantees that individual derivations yield the correct cost—i.e., it does
not account for the ⊕-sum of multiple derivations.
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Example 2.10. The following WTG over Prob is ambiguous and, if we apply the grammar
reduction algorithm for ω := w � 0.6, the resulting grammar will be empty. However, the
tree 1 + 1 has weight 0.9 � 0.6 (0.9 > 0.6).

Start ::= Start + Start/0.5
| x | 0 | 1 | Expr

Expr ::= Expr + Expr/0.4
| x | 0 | 1

We now identify sufficient conditions under which the construction of G�s
terminates and is sound. In particular, we start by restricting our attention to
unambiguous WTGs, which are the common ones in practice. We use weights(G) =
{s | p ∈ P ∧ µ(p) = s} to denote the set of weights used by G andMS,G = (S ′,⊗, 1)
to denote the submonoid of S generated by weights(G)—i.e., the set of all weights
we can generate using ⊗ and weights(G).

Theorem 2.11. Given an unambiguous WTG G over a semiring S such that MS,G =

(S ′,⊗, 1), and a weight s ∈ S, the construction of G�s terminates if the set {s ′ | s ′ �
s ∧ w ∈ S ′} is finite. Moreover, if the set of weights weights(G) is monotonically
increasing with respect to �—i.e. for every s ∈ S and s ′ ∈ weights(G), s � s⊗ s ′—then
L(G�s) contains exactly every tree t such that wG(t) � s.

Proof. We first show that each step of the algorithm terminates. Steps 1 and 2
terminate since the grammar G is finite. Step 3 only produces nonterminals that
belongs to N× {s ′ | s ′ � s∧w ∈ S ′} which is also finite.

We now prove soundness. It is straightforward to prove the following claim
by induction: for every nonterminal (A, s) ∈ N ′, tree t ∈ TΣ, we have that d ∈
der((A, s ′), t) iff there exists a derivation d ′ ∈ der(A, t) such that dw(d ′) = s ′ and
s ′ � s. BecauseG is unambiguous, every tree has at most one derivation. Therefore
dw(d ′) = wG(t) and wG(t) � s.

The theorem above also holds for other atomic constraints w ≺ s, s � w, or
s ≺ w (for these last two, the direction of the monotonicity is reversed). Moreover,
in certain cases, even if the construction may not terminate for, let’s say s � w, it
might terminate for the negated constraint w ≺ s. In such a case, we can use the
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closure properties of regular tree grammars/automata to construct the reduced
grammar for s � w as G�w = intersect(G, complement(G�w)). The same idea can
be applied to all atomic constraints.

In practice, the restriction of Theorem 2.11 holds for grammars that operate
over the Boolean and probabilistic semirings, and the tropical semiring only with
positive weights. Theorem 2.11 never holds when S is the tropical semiring and
the grammar contains negative weights. In general, one cannot construct the
constrained grammar in this case. However, it is easy to modify our algorithm to
work with grammars that do not contain loops—i.e., derivations from a nonterminal
to a tree containing the same nonterminal—with negative weights.

Intuitively, when the grammar contains no negative loops, we can find a constant
SH such that any intermediate derivation with weight greater than s+SHwill never
result in tree with weight smaller than s. We use this idea to modify the construction
of GTrop

6s —i.e., G6s for Trop—as follows. First, this constant is bounded by ckn+1

where c is the absolute value of the smallest negative weight in the grammar, k is the
largest number of nonterminals appearing in one grammar production, and n = |N|

is the number of nonterminals. Second, in steps 2 and 3 of the construction, a new
nonterminal and the corresponding productions are produced if µ(p) 6 s+ |SH|

(previously µ(p) 6 s). However, ifA = Z in steps 2 and 3, we add a new production
Z ′ → (A, s ′) only if s ′ � s.

We now show when this construction terminates and return correct values.
Since the tropical semiring combines multiple runs using the min operator, we can
drop the requirement that the grammar has to be unambiguous.

Theorem 2.12. Given a WTG G over Trop and a weight s ∈ Z, the construction of GTrop
6s

terminates ifG contains no loop with cumulative negative weight. Moreover,GTrop
6s contains

exactly every tree t such that wG(t) 6 s.

Proof. First, we show that any tree with weight6 smust be accepted byGTrop
6s . We do

so by showing that if a tree t is not accepted byGTrop
6s —i.e., t has some subtree βwith

weight greater than s+ SH—the weight of tmust be greater than s. Note that the
modified algorithm can track weights 6 s+ |SH| in the intermediate nonterminals
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but still accept only trees with weight 6 s. According to the definition, the weight
of t is the sum of all rules used to derived t, that is, wG(t) = wG(β) + wG(t[B/β])
where t[B/β] ∈ TΣ∪{B} is the result of substituting the node corresponding to β
with B. Then if t[B/β] contains loops, we can eliminate all loops from it to get a
tree t ′[B/β] such that wG(t[B/β]) > wG(t ′[B/β]) because loops have non-negative
weights. If t[B/β] contains no loop, its weight wG(t[B/β]) > −ckn+1 = −SH since
the size of t[B/β] is no more than kn+1 (the height of t[B/β] is no more than n since
there is no loop in it) and each production used to derive t[B/β] has weight greater
than −c. Therefore, using the fact that wG(t[B/β]) > −SH, we have that the weight
of t is wG(β) + wG(t[B/β]) > s+ SH+ wG(t[B/β]) > s.

Now, we show that the algorithm terminates. We observe that there is only
a finite number of trees without loops so the set of their weights is also finite,
namely the minimum weight of any tree without loops is w∗. On the other hand,
for any tree t containing loops, the weight w of t must be greater or equal to the
weight of some tree without loops—i.e., w > w∗. This is because we can eliminate
loops, whose weights are non-negative, from t and the resulting tree has a weight
greater than or equal to the weight of t. So the weights of nonterminal produced
by our constructions all fall in the range [w∗, s + SH], which is finite. Finally, the
construction only needs to consider a finite number of nonterminals, and will
always terminate.

Composing semirings. We next discuss how Theorem 2.11 relates to product semir-
ings. Given a grammarG = (N,Z,P,µ) over a semiring S1×SS2, we useGSi to denote
the grammar (N,Z,P,µi) in which the weight function outputs the corresponding
projected weight—i.e., if µ(p) = (s1, s2), then µi(p) = si.

Let’s first consider the case where the product semiring uses a Pareto partial
order. In this case, if Theorem 2.11 holds for each grammar GSi and wi �i si, then
it holds for G and (w1,w2) �p (s1, s2). However, the other direction is not true.
Theorem 3 proves this intuition and states that, in some sense, solving Pareto partial
orders is easier than solving the individual partial orders.
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Theorem 3. Given an unambiguous WTG G over the semiring S = S1 ×S S2 with Pareto
partial order �p= par(�1,�2) and a weight s = (s1, s2) ∈ S, if the constructions GS1

�1s1

and GS2
�2s2

terminate, then the construction of G�s terminates.

Proof. We first show by induction that if a nonterminal (X,w1,w2) is produced in
the construction of GS

�s, the nonterminals (X,w1) and (X,w2) must be produced
in the construction of GS1

�s1
and GS1

�s1
respectively. For the base case, we consider

the nonterminals (X,w1,w2) produced in step 2 with production p. The condition
µ(p) � s in step 2 implies that µ1(p) � s1 and µ2(p) � s2, which means that
(X,w1) and (X,w2) are also produced in the construction of the corresponding
grammar. Then, for every nonterminal (X,w1,w2) produced in step 3 with rule
p and {(Xi,w(1)

i ,w(2)
i )}i ⊆ N ′, where (w1,w2) := µ(p) ⊗

⊗
i(w

(1)
i ,w(2)

i ) � (s1, s2),
according to the induction hypothesis, nonterminals in {(Xi,wi1)}i and {(Xi,wi2)}i
are already produced in the grammarsGS1

�s1
andGS2

�s2
. Therefore, we can apply step

3 with p and nonterminals GS1
�s1

(or GS2
�s2

) to produce a new nonterminal (X,w1)

(or (X,w2)). Note that w1 = µ(p)⊗
⊗
iw

(1)
i � s1, and w2 = µ(p)⊗

⊗
iw

(2)
i � s2,.

Since both of the constructions of GS1
�1s1

and GS2
�2s2

terminate, the number of
nonterminals they produce, namely n1 and n2, must be finite. We have shown that
the number of nonterminals produced in GS

�s is less than n1 × n2, which is also
finite. Finally, the construction of GS

�s terminates.

When we move to a sorted partial order, we cannot get an analogous theorem: if
Theorem 2.11 holds for each grammar GSi and wi �i si, then it does not necessary
hold for G and (w1,w2) �s (s1, s2). In particular, if the semiring S2 is infinite and
there exists an s ′1 ≺ s1, there will be infinitely many elements (s ′1, _) ≺ (s1, s2).
Using this observation, we devise a modified algorithm for reducing grammars
with sorted objectives. First, we compute the grammars GS1

≺1s1 , GS1
=s1

, and GS2
≺2s2 .

Second, we use WTG closure properties to compute G�s(s1, s2) as the union of
GS1
≺1s1 and intersect(GS1

=s1
,GS2
≺2s2).

General formulas. We can now inductively construct the grammar accepting only
terms satisfying all constraints inω. We again use the fact that tree grammars are
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closed under Boolean operations to compute intersections and unions, and correctly
characterize all conjunctions and unions appearing in the formula.

Finding an Optimal Solution

If our QSyGuS problem does not require minimization—i.e., opt = false—the
technique presented in Section 2.4 can be used to generate an equivalent SyGuS
problem P ′ = (T ,ψ(f),G ′), which can be solved using off-the-shelf SyGuS solvers.
In this section, we show how to extend this technique to handle minimization
objectives. Our idea is to use SyGuS solvers to find a non-optimal solution for P ′

and then iteratively refine our grammar G ′ to search for a better solution. This
loop is illustrated in Algorithm 1 (lines 5-9). Given the initial solution f∗ to P ′ such
that wG(f∗) = s, we can construct a new grammar G≺s and look for a solution with
lower weight. If the SyGuS solver we use is sound—i.e., if it can find a solution if it
exists—and complete—i.e., it can detect if a solution does not exist—Algorithm 1
terminates with an optimal solution.

In general, the above conditions are too strict and in practice this implies that
the algorithm will often not terminate. However, if the SyGuS solver is sound,
Algorithm 1 will eventually find the optimal solution, but it will not be able to prove
that no smaller one exists. In our experiments, we will show that this approach
can yield better solutions than those given by vanilla SyGuS solvers, even when
Algorithm 1 does not terminate.

2.5 Implementation and Evaluation

First, we extended the SyGuS format with new syntax for expressing QSyGuS
problems. Our format supports all semirings presented in Section 2.3, as well as
additional ones. The format also allows creating tuples of semirings using the
product operation described in Section 2.3. We augment the original SyGuS syntax
to support weights on grammar productions. Weight constraints are added using
an SMT-like syntax.
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Second, we implemented Algorithm 1 in a tool called QuaSi. QuaSi already
interfaces with three SyGuS solvers: CVC4 [BCD+11], ESolver [AFSSL16b], and
EUSolver [ARU17b]. QuaSi supports all the semirings allowed in our format and
implements a library for tree automata/grammars and weighted tree automata/-
grammars operations, as well as several optimizations we did not discuss in the
dissertation. In particular, QuaSi often uses simple grammar-reduction techniques
to simplify the generated grammars, remove unnecessary productions, and consol-
idate equivalent ones.

We evaluate QuaSi through the following questions (experiments performed
on an Intel Core i7 4.00GHz CPU with 32GB/RAM).

Q1 Can QuaSi solve quantitative variants of real SyGuS benchmarks? (§ 2.5)
Q2 What is the overhead of synthesizing optimal solutions? (§ 2.5)
Q3 How do multiple iterations of Alg. 1 affect the solution’s weight? (§ 2.5)
Q4 Can QuaSi solve QSyGuS problems with multiple objectives? (§ 2.5)

Benchmarks. We perform our evaluation on 26 quantitative extensions of existing
SyGuS competition benchmarks taken from 4 SyGuS benchmark tracks [AFSSL16b]:
Hackers Delight, Integers, ICFP and Bitvector. 18 of our benchmarks only use a
minimization objective over a single semiring (Table 2.1), while 8 use a minimiza-
tion objective (Pareto or Sorted) over a product semiring (Table 2.2). We select
SyGuS benchmarks using the following criteria: (i) the benchmark can be solved by
either CVC4 [BCD+11] or ESolver [AFSSL16b], and (ii) the solution is not optimal
according to some reasonable metric—e.g., size or number of if statements. The
following are the full description of benchmarks presented in Table 2.1.

max_ite(a,b) These benchmarks extend the SyGuS benchmark max2 by restricting
the number of if statements between a and b and then require minimizing
the total size of the solution. These benchmarks operate over the semiring
Trop×S Trop, but only impose one minimization objective.

parity_not minimizes the number of not operators in corresponding SyGuS bench-
mark.
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Table 2.1: Performance of QuaSi. Time shows the sequence of times taken to solve
individual iterations of Alg. 1. Largest is the size of the largest SyGuS sub-problem.
Grammar Size is the number of rules in the original grammar.

Problem CVC4 ESolver Grammar
Time[sec] Largest Time[sec] Largest Size

Tr
op

max_ite(2,3) 0.1+0.1 42 0.1 42 13
max_ite(2,15) 0.1+0.1 239 0.3 239 13
max_ite(3,15) 0.1+0.1+0.1 238 OOM 238 13
max_ite(10,15) 0.5+0.5+0.9 226 OOM 226 13

parity_not 0.1+TO 301 26.9+TO 43 6
max3_ite 0.1+TO 31 OOM - 14

array_search_3 0.1+TO 135 TO - 15
array_search_5 0.1+TO 108 TO - 16

hackers_5 0.1+0.1 27 0.1+0.1+0.1 35 13
hackers_7 0.1+0.3 35 0.1+0.1+0.2 41 13
hackers_17 0.1+0.7 41 2.8+3.0+1.0 62 13
hackers_19 0.2+TO 174 TO - 13

icfp_7 0.2+TO 146 TO - 11
LinExpr_eq1ex 0.7+TO 1717 TO - 14

Pr
ob

hackers_2_prob 0.6+4.1+0.1 95 0.8+0.1+0.2 154 13
hackers_5_prob 0.1+0.9+0.1 96 0.1+0.2+0.1 154 13
hackers_7_prob 0.1+TO 162 0.1+0.1+0.2 212 13
hackers_17_prob 0.1+TO 187 3.4+6.5+OOM 291 13

max3_ite minimizes the number of ite operators in corresponding SyGuS bench-
mark.

The remainder of the Tropbenchmarks minimizes the size of the solution in the
corresponding SyGuS benchmark.

hackers_a_prob Probabilistic extensions of corresponding SyGuS benchmarks
(Prob semiring). The probability scheme we use assigns probability 1

8 to
shift operators, probability 1

4 to arithmetic operators and 1
2 to logical operators.

The goal is to find the most probable solution.

Effectiveness of QSyGuS Solver

We evaluate the effectiveness of QuaSi on the 18 single-minimization-objective
benchmarks. For each benchmark, we run QuaSi using either CVC4 or ESolver as
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the backend SyGuS solver (we also evaluated QuaSi using EUSolver [ARU17b],
but, due to its poor performance, we do not report the results). The results are
shown in Table 2.1. The timeout for each iteration of Alg. 1 is 10 minutes.

With CVC4, QuaSi terminates with an optimal solution for 9/18 benchmarks,
taking less than 5 seconds (avg: 0.7s) to solve each sub-problem. In 3 of these
cases, the initial solution is already optimal and the second iteration is used to
prove optimality. With ESolver, QuaSi terminates with an optimal solution for 8/18
benchmarks, taking less than 7 seconds (avg: 0.9s) to solve each sub-problem. In 2
cases, it can find a better solution than the original one, but it cannot prove that the
solution is optimal. Overall, by combining solvers, QuaSi can find a better solution
than the original SyGuS solution given by one of the two solvers for 9/18 bench-
marks. QuaSi cannot improve the initial solution of the linear-integer-arithmetic
benchmarks (array_search and LinExpr_eq1ex).

Both solvers timeout on large grammars. The grammars in Table 2.1 are 1 to 2
order of magnitude larger than those in existing SyGuS benchmarks (avg: 224 vs
13 rules) and existing solvers have not yet been optimized for this parameter. In
some cases, the solver times out for intermediate grammars that do not contain a
solution, but that generate infinitely many terms. In general, existing SyGuS solvers
cannot prove unsatisfiability for these types of problems. To answer Q1, QuaSi can
solve quantitative variants of 10/18 real SyGuS benchmarks.

Solving Time for Different Iterations

In this section, we evaluate the time required by each iteration of Alg. 1. Figure 2.3
shows the ratio of time taken by each iteration with respect to the initial non-
quantitative SyGuS solving time. Some of the iterations shown in Figure 2.1 do not
appear in Figure 2.3 since they resulted in no solution—i.e., the initial solution was
minimal. CVC4 is typically slower in subsequent iterations and can take up to 10
times the original solving time, while later iterations of ESolver have comparable
runtime to the initial run, and are often faster. These numbers are largely due to
how the two solvers work: CVC4 is optimized to solve problems where the grammar
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Figure 2.3: Solving time across iterations

imposes no restrictions on the structure of the solution, while ESolver performs
enumerative search and takes advantage of more restrictive grammars.

One interesting point is the parity_not benchmark. ESolver takes 26.9s to find
an initial solution. But, with a weight constraint w < 11, an solution can be found
in 2.2s. CVC4 can find the initial solution with weight 11 in 0.1s but cannot solve
the next iteration. We tried using different solvers in different iterations of our
algorithm and, in fact, found that, if we use CVC4 to find an initial solution and
then ESolver in subsequent iterations with restricted grammars, we can fully solve
this benchmark in a total of 2.3s, which is much better than the time taken by a
single solver. To answer Q2, with appropriate choices of solvers the overhead of
synthesizing optimal solutions is minimal.

Solution Weight across Iterations

In this section, we present how the weight of the synthesized solutions changes
across each iteration of Alg. 1. Figure 2.4 shows the percentage of weight of solutions
synthesized at each iteration with respect to the weight of the initial SyGuS solution.
The result shows that we can improve the solutions of CVC4 by 15-25% in one
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Figure 2.4: Solution weight across iterations.

iteration, and the solutions of ESolver by 20-50% when taking one iteration and
50-60% when taking two. The Prob benchmarks, which require two iterations, can
be improved more when using ESolver because ESolver tends to synthesize small
terms whose probability may also be small. To answer Q3, QuaSi can improve the
weights of SyGuS solutions by 20-60%.

Multi-Objective Optimization

In this section, we evaluate the effectiveness of QuaSi on the 8 benchmarks involving
two minimization objectives. The benchmarks consists of two families, 4 for sorted
optimization and 4 for Pareto optimization. The sorted-optimization benchmarks
ask to minimize first the number of occurrences of a specified operator (bvand
in hacks and ite in array_search) and then the size of the solution. The Pareto-
optimization benchmarks have the same objectives as sorted optimizations but here
we are synthesizing a Pareto-optimal solution instead of sorted-optimal one. The
results are shown in Table 2.2. We do not present the results using CVC4 because it
cannot solve any of the benchmarks.

The array_search times out since it is already hard on a single objective. For
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Table 2.2: Performance of QuaSi on multi-objective benchmarks. Weight denotes
the sequence of weights explored during minimization.

Problem Time[sec] Weight Largest Size
Tr

op
×

Tr
op

array_search_sorted TO - - 15
hackers_5_sorted 0.1+0.1+01 (0, 3)→ (0, 2) 31 13
hackers_7_sorted 0.1+0.3+0.1 (1, 4)→ (0, 5)→ (0, 3) 72 13
hackers_17_sorted 0.1+156.1+TO (2, 5)→ (1, 4)→ (0, 6) 97 13

array_search_pareto TO - - 15
hackers_5_pareto 0.1+0.1+01 (0, 3)→ (0, 2) 31 13
hackers_7_pareto 0.1+0.3+0.1 (1, 4)→ (1, 3)→ (0, 3) 74 13
hackers_17_pareto 0.1+9.1+0.1 (2, 5)→ (2, 4)→ (1, 4) 54 13

hackers_5 benchmarks, the initial solution is already optimized for the first ob-
jective, so the problem degenerates to the single-objective optimization problem.
For hackers_7 and hackers_17, Table ?? shows the weights of the intermediate
solutions we can see that Pareto and Sorted optimizations yield different solutions.
To answer Q4, QuaSi can solve problems with multiple objectives when the same
problems are feasible with a single objective.

2.6 Summary

We presented QSyGuS, a general framework for defining and solving SyGuS prob-
lems in the presence of quantitative objectives over the syntax of the programs.
QSyGuS is (i) natural: requires minimal modification to the SyGuS format, (ii) gen-
eral: it supports complex but practical types of weights, (iii) formal: it is grounded in
the theory of weighted tree grammars, (iv) effective: our tool QuaSi can solve quan-
titative variations of existing SyGuS benchmarks with little overhead. In the future,
we plan to extend our framework to handle probabilistic objectives and quantitative
objectives over the semantics of the program—e.g., synthesize programs that satisfy
most of the specification.
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Chapter 3

Proving Unrealizability of
Syntax-Guided Synthesis Problems

3.1 Introduction

In the previous chapter, we described how to add quantitative syntactic objectives
to syntax-guided synthesis problems (SyGuS), which is a large family of synthesis
problems specified by a regular-tree grammar that describes the search space of
programs, and a logical formula that constitutes the behavioral specification. We
also presented an algorithm for solving optimizing objectives by reducing the
problems of proving solutions being optimal to problems of proving unrealizability
of synthesis problems (Section 2.4). So, in this chapter, we study the problem of
proving unrealizability of SyGuS problems.

Recall the SyGuS problem shown in Section 2.2 to synthesize a function f that
computes the maximum of two variables x and y, denoted by (ψmax2(f, x,y),G1).
The goal is to create ef—an expression-tree for f—where ef is in the language of
the following regular-tree grammar G1:

Start ::= Plus(Start, Start) | IfThenElse(BExpr, Start, Start) | x | y | 0 | 1
BExpr ::= GreaterThan(Start, Start) | Not(BExpr) | And(BExpr, BExpr)
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and ∀x,y.ψmax2(JefK, x,y) is valid, where JefK denotes the meaning of ef, and

ψmax2(f, x,y) := f(x,y) > x∧ f(x,y) > y∧ (f(x,y) = x∨ f(x,y) = y).

SyGuS solvers can easily find a solution, such as

e := if x > y then x else y.

Note that the grammar G1 is the same as the grammar shown in Fig. 2.1 but
with all operators written as functions.

Although many solvers can now find solutions efficiently to many SyGuS prob-
lems, there has been effectively no work on the much harder task of proving that a
given SyGuS problem is unrealizable—i.e., it does not admit a solution. For example,
consider the SyGuS problem (ψmax2(f, x,y),G2), where G2 is the more restricted
grammar with if-then-else operators and conditions stripped out:

Start ::= Plus(Start, Start) | x | y | 0 | 1

This SyGuS problem does not have a solution, because no expression generated by
G2 meets the specification.1 However, to the best of our knowledge, current SyGuS
solvers cannot prove that such a SyGuS problem is unrealizable.2

A key property of the previous example is that the grammar is infinite. When
such a SyGuS problem is realizable, any search technique that systematically ex-
plores the infinite search space of possible programs will eventually identify a
solution to the synthesis problem. In contrast, proving that a problem is unrealiz-
able requires showing that every program in the infinite search space fails to satisfy
the specification. This problem is in general undecidable [CRST15]. Although we

1Grammar G2 only generates terms that are equivalent to some linear function of x and y;
however, the maximum function cannot be described by a linear function.

2The synthesis problem (ψmax2(f, x,y),G2) arises from a QSyGuS problem in which the goal is
to produce an expression that (i) satisfies the specification ψmax2(f, x,y), and (ii) uses the smallest
possible number of if-then-else operators. Existing SyGuS solvers can easily produce a solution that
uses one if-then-else operator, but cannot prove that no better solution exists—i.e., (ψmax2(f, x,y),G2)
is unrealizable.
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cannot hope to have an algorithm for establishing unrealizability, the challenge is
to find a technique that succeeds for the kinds of problems encountered in practice.
Existing synthesizers can detect the absence of a solution in certain cases (e.g.,
because the grammar is finite, or is infinite but can only generate a finite number of
functionally distinct programs). However, in practice, as our experiments show,
this ability is limited—no existing solver was able to show unrealizability for any
of the examples considered in this chapter.

In this chapter, we present two techniques for proving that a possibly infinite
SyGuS problem is unrealizable.

Proving Unrealizability via a Reachability Problem

The first technique (§3.3) is reducing the problems of proving unrealizability to
reachability problems. The technique builds on two ideas.

1. We observe that unrealizability can often be proven using finitely many input
examples. In §3.3, we show how the example discussed above can be proven
to be unrealizable using four input examples—(0, 0), (0, 1), (1, 0), and (1, 1).

2. We devise a way to encode a SyGuS problem (ψ(f, x̄),G) over a finite set of
examples E as a reachability problem in a recursive program P[G,E]. In particular,
the program that we construct has an assertion that holds if and only the
given SyGuS problem is unrealizable. Consequently, unrealizability can be
proven by establishing that the assertion always holds. This property can
often be established by a conventional program-analysis tool.

The encoding mentioned in item 2 is non-trivial for three reasons. The following
list explains each issue, and sketches how they are addressed

1) Infinitely many terms. We need to model the infinitely many terms generated by
the grammar of a given synthesis problem (ψ(f, x̄),G).

To address this issue, we use non-determinism and recursion, and give an en-
coding P[G,E] such that (i) each non-deterministic path p in the program P[G,E]
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corresponds to a possible expression ep thatG can generate, and (ii) for each expres-
sion e that G can generate, there is a path pe in P[G,E]. (There is an isomorphism
between paths and the expression-trees of G.)

2) Nondeterminism. We need the computation performed along each path p in
P[G,E] to mimic the execution of expression ep. Because the program uses non-
determinism, we need to make sure that, for a given path p in the program P[G,E],
computational steps are carried out that mimic the evaluation of ep for each of the
finitely many example inputs in E.

We address this issue by threading the expression-evaluation computations
associated with each example in E through the same non-deterministic choices.

3) Complex Specifications. We need to handle specifications that allow for nested
calls of the programs being synthesized.

For instance, consider the specification f(f(x)) = x. To handle this specification,
we introduce a new variable y and rewrite the specification as f(x) = y∧ f(y) = x.
Because y is now also used as an input to f, we will thread both the computations
of x and y through the non-deterministic recursive program.

3.2 Background

In this chapter, we focus on typed regular tree grammars, in which each nonter-
minal and each symbol is associated with a type. There is a finite set of types
{τ1, . . . , τk}. Associated with each symbol σ(i) ∈ Σ(i), there is a type assignment
aσ(i) = (τ0, τ1, . . . , τi), where τ0 is called the left-hand-side type and τ1, . . . , τi are
called the right-hand-side types. Tree grammars are similar to word grammars, but
generate trees over a ranked alphabet instead of words.

Definition 3.1 (Regular Tree Grammar). A typed regular tree grammar (RTG) is
a tuple G = (N,Σ,S,a, δ), where N is a finite set of non-terminal symbols of arity 0; Σ is
a ranked alphabet; S ∈ N is an initial non-terminal; a is a type assignment that gives types
for members of Σ∪N; and δ is a finite set of productions of the formA0 → σ(i)(A1, . . . ,Ai),
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where for 1 6 j 6 i, each Aj ∈ N is a non-terminal such that if a(σ(i)) = (τ0, τ1, . . . , τi)
then a(Aj) = τj.

In a SyGuS problem, each variable, such as x and y in the example RTGs in §3.1,
is treated as an arity-0 symbol—i.e., x(0) and y(0).

Given a tree t ∈ TΣ∪N, applying a production r = A→ β to t produces the tree
t ′ resulting from replacing the left-most occurrence of A in twith the right-hand
side β. A tree t ∈ TΣ is generated by the grammar G—denoted by t ∈ L(G)—iff it
can be obtained by applying a sequence of productions r1 · · · rn to the tree whose
root is the initial non-terminal S.

Syntax-Guided Synthesis. A SyGuS problem is specified with respect to a back-
ground theory T—e.g., linear arithmetic—and the goal is to synthesize a function
f that satisfies two constraints provided by the user. The first constraint, ψ(f, x̄),
describes a semantic property that f should satisfy. The second constraint limits the
search space S of f, and is given as a set of expressions specified by an RTG G that
defines a subset of all terms in T .

Definition 3.2 (SyGuS). A SyGuS problem over a background theory T is a pair sy =

(ψ(f, x̄),G) whereG is a regular tree grammar that only contains terms in T—i.e., L(G) ⊆
T—and ψ(f, x̄) is a Boolean formula constraining the semantic behavior of the synthesized
program f.

A SyGuS problem is realizable if there exists a expression e ∈ L(G) such that
∀x̄.ψ(JeK, x̄) is true. Otherwise we say that the problem is unrealizable.

Theorem 3.3 (Undecidability [CRST15]). Given a SyGuS problem sy, it is undecidable
to check whether sy is realizable.

Counterexample-Guided Inductive Synthesis. The Counterexample-Guided In-
ductive Synthesis (CEGIS) algorithm is a popular approach to solving synthesis
problems. Instead of directly looking for an expression that satisfies the specifica-
tion ϕ on all possible inputs, the CEGIS algorithm uses a synthesizer S that can
find expressions that are correct on a finite set of examples E. If S finds a solution
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that is correct on all elements of E, CEGIS uses a verifier V to check whether the
discovered solution is also correct for all possible inputs to the problem. If not, a
counterexample obtained from V is added to the set of examples, and the process
repeats. More formally, CEGIS starts with an empty set of examples E and repeats
the following steps:

1. Call the synthesizer S to find an expression e such that ψE(JeK, x̄) def
= ∀x̄ ∈

E.ψ(JeK, x̄) holds and go to step 2; return unrealizable if no expression exists.

2. Call the verifier V to find a model c for the formula ¬ψ(JeK, x̄), and add c to
the counterexample set E; return e as a valid solution if no model is found.

Because SyGuS problems are only defined over first-order decidable theories,
any SMT solver can be used as the verifierV to check whether the formula¬ψ(JeK, x̄)
is satisfiable. On the other hand, providing a synthesizer S to find solutions such
that ∀x̄ ∈ E.ψ(JeK, x̄) holds is a much harder problem because e is a second-order
term drawn from an infinite search space. In fact, checking whether such an e exists
is an undecidable problem.

CEGIS and Unrealizability

The CEGIS algorithm is sound but incomplete for proving unrealizability. Given a
SyGuS problem sy = (ψ(f, x̄),G) and a finite set of inputs E, we denote by syE :=

(ψE(f, x̄),G) the corresponding SyGuS problem that only requires the function f to
be correct on the examples in E.

Lemma 3.4 (Soundness). If syE is unrealizable then sy is unrealizable.

Proof. For every expression e and input c̄we have that ψ(JeK, c̄)⇒ ψE(JeK, c̄) and
by contraposition ¬ψE(JeK, c̄)⇒ ¬ψ(JeK, c̄). Hence, the lemma holds.

Even when given a perfect synthesizer S—i.e., one that can solve a problem syE

for every possible set E—there are SyGuS problems for which the CEGIS algorithm
is not powerful enough to prove unrealizability.
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Lemma 3.5 (Incompleteness). There exists an unrealizable SyGuS problem sy such that
for every finite set of examples E the problem syE is realizable.

Proof. Let syeq = (ψeq(f, x),Geq) be the SyGuS problem over the theory of linear-
integer arithmetic such that ψeq(f, x)

def
= f(x) = x; that is, ψeq(f, x) is a predicate

denoting that f should implement the identity function. Let Geq be the following
grammar:

Start ::= Plus(Start, Start) | IfThenElse(BExpr, Start, Start) | 0 | 1
BExpr ::= Equals(x, Start)

The problem syeq is unrealizable. Because the grammar does not contain the
production Start → x, every expression e = L(Geq) can only produce a finite
number of constant outputs. However, for every set of examples E = {n1, . . . ,nk}
the following expression eE ∈ L(Geq) is a valid solution to syE (i.e., ψEeq(JeEK, x)
holds):

IfThenElse(Equals(x, T(n1)), T(n1),
IfThenElse(Equals(x, T(n2)), T(n2), . . . , T(nk) . . .)

where T(n) is the expression-tree corresponding to 0 + 1 + . . . + 1︸ ︷︷ ︸
n

. Hence, the

CEGIS algorithm will never terminate for syeq.

Despite this negative result, we will show that a CEGIS algorithm can prove
unrealizability for many SyGuS instances (§3.8).

3.3 Unrealizability as Verification

Illustrative Example

In this section, we illustrate the main components of our framework for establishing
the unrealizability of a SyGuS problem.

Consider the SyGuS problem to synthesize a function f that computes the maxi-
mum of two variables x and y, denoted by (ψmax2(f, x,y),G1). The goal is to create
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ef—an expression-tree for f—where ef is in the language of the following regular-
tree grammar G1:

Start ::= Plus(Start, Start) | IfThenElse(BExpr, Start, Start) | x | y | 0 | 1
BExpr ::= GreaterThan(Start, Start) | Not(BExpr) | And(BExpr, BExpr)

and ∀x,y.ψmax2(JefK, x,y) is valid, where JefK denotes the meaning of ef, and

ψmax2(f, x,y) := f(x,y) > x∧ f(x,y) > y∧ (f(x,y) = x∨ f(x,y) = y).

SyGuS solvers can easily find a solution, such as

e := IfThenElse(GreaterThan(x,y), x,y).

Although many solvers can now find solutions efficiently to many SyGuS prob-
lems, there has been effectively no work on the much harder task of proving that a
given SyGuS problem is unrealizable—i.e., it does not admit a solution. For example,
consider the SyGuS problem (ψmax2(f, x,y),G2), where G2 is the more restricted
grammar with if-then-else operators and conditions stripped out:

Start ::= Plus(Start, Start) | x | y | 0 | 1

This SyGuS problem does not have a solution, because no expression generated by
G2 meets the specification.3 However, to the best of our knowledge, current SyGuS
solvers cannot prove that such a SyGuS problem is unrealizable. As an example, we
use the problem (ψmax2(f, x,y),G2) discussed in §3.1, and show how unrealizability
can be proven using four input examples: (0, 0), (0, 1), (1, 0), and (1, 1).

Our method can be seen as a variant of Counter-Example-Guided Inductive
Synthesis (CEGIS), in which the goal is to create a program P in which a certain
assertion always holds. Until such a program is created, each round of the algorithm

3Grammar G2 generates all linear functions of x and y, and hence generates an infinite number
of functionally distinct programs; however, the maximum function cannot be described by a linear
function.
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1 int I_0;
2 void Start(int x_0 ,int y_0){
3 if(nd()){ // Encodes ‘‘Start ::= Plus(Start , Start)’’
4 Start(x_0 , y_0);
5 int tempL_0 = I_0;
6 Start(x_0 , y_0);
7 int tempR_0 = I_0;
8 I_0 = tempL_0 + tempR_0 ;
9 }

10 else if(nd()) I_0 = x_0; // Encodes ‘‘Start ::= x’’
11 else if(nd()) I_0 = y_0; // Encodes ‘‘Start ::= y’’
12 else if(nd()) I_0 = 1; // Encodes ‘‘Start ::= 1’’
13 else I_0 = 0; // Encodes ‘‘Start ::= 0’’
14 }
15
16 bool spec(int x, int y, int f){
17 return (f>=x && f>=y && (f==x || f==y))
18 }
19
20 void main (){
21 int x_0 = 0; int y_0 = 1; // Input example (0 ,1)
22 Start(x_0 ,y_0);
23 assert (! spec(x_0 ,y_0 ,I_0));
24 }

Figure 3.1: Program P[G2,E1] created during the course of proving the unrealizabil-
ity of (ψmax2(f, x,y),G2) using the set of input examples E1 = {(0, 1)}.

returns a counter-example, from which we extract an additional input example for
the original SyGuS problem. On the ith round, the current set of input examples
Ei is used, together with the grammar—in this case G2—and the specification of
the desired behavior—ψmax2(f, x,y), to create a candidate program P[G2,Ei]. The
program P[G2,Ei] contains an assertion, and a standard program analyzer is used
to check whether the assertion always holds.

Suppose that for the SyGuS problem (ψmax2(f, x,y),G2) we start with just the one
example input (0, 1)—i.e., E1 = {(0, 1)}. Fig. 3.1 shows the initial program P[G2,E1]

that our method creates. The function spec implements the predicate ψmax2(f, x,y).
(All of the programs {P[G2,Ei]} use the same function spec.) The initialization
statements “int x_0 = 0; int y_0 = 1;” at line (21) in procedure main corre-
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spond to the input example (0, 1). The recursive procedure Start encodes the
productions of grammar G2. Start is non-deterministic; it contains four calls to an
external function nd(), which returns a non-deterministically chosen Boolean value.
The calls to nd() can be understood as controlling whether or not a production is
selected from G2 during a top-down, left-to-right generation of an expression-tree:
lines (3)–(8) correspond to “Start ::= Plus(Start, Start),” and lines (10), (11), (12),
and (13) correspond to “Start ::= x,” “Start ::= y,” “Start ::= 1,” and “Start ::= 0,”
respectively. The code in the five cases in the body of Start encodes the semantics
of the respective production of G2; in particular, the statements that are executed
along any execution path of P[G2,E1] implement the bottom-up evaluation of some
expression-tree that can be generated by G2. For instance, consider the path that visits
statements in the following order (for brevity, some statement numbers have been
elided):

21 22 (Start 3 4 (Start 10 )Start 6 (Start 12 )Start 8 )Start 23, (3.1)

where (Start and )Start indicate entry to, and return from, procedure Start, re-
spectively. Path (3.1) corresponds to the top-down, left-to-right generation of the
expression-tree Plus(x,1), interleaved with the tree’s bottom-up evaluation.

Note that with path (3.1), when control returns to main, variable I_0 has the
value 1, and thus the assertion at line (23) fails.

A sound program analyzer will discover that some such path exists in the
program, and will return the sequence of non-deterministic choices required to
follow one such path. Suppose that the analyzer chooses to report path (3.1);
the sequence of choices would be t, f, t, f, f, f, t, which can be decoded to create
the expression-tree Plus(x,1). At this point, we have a candidate definition for
f: f = x + 1. This formula can be checked using an SMT solver to see whether
it satisfies the behavioral specification ψmax2(f, x,y). In this case, the SMT solver
returns “false.” One counter-example that it could return is (0, 0).

At this point, program P[G2,E2] would be constructed using both of the example
inputs (0, 1) and (0, 0). Rather than describe P[G2,E2], we will describe the final
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1 int I_0 , I_1 , I_2 , I_3;
2 void Start(int x_0 ,int y_0 ,... , int x_3 ,int y_3){
3 if(nd()){ // Encodes ‘‘Start ::= Plus(Start , Start)’’
4 Start(x_0 , y_0 , x_1 , y_1 , x_2 , y_2 , x_3 , y_3);
5 int tempL_0 = I_0; int tempL_1 = I_1;
6 int tempL_2 = I_2; int tempL_3 = I_3;
7 Start(x_0 , y_0 , x_1 , y_1 , x_2 , y_2 , x_3 , y_3);
8 int tempR_0 = I_0; int tempR_1 = I_1;
9 int tempR_2 = I_2; int tempR_3 = I_3;

10 I_0 = tempL_0 + tempR_0 ;
11 I_1 = tempL_1 + tempR_1 ;
12 I_2 = tempL_2 + tempR_2 ;
13 I_3 = tempL_3 + tempR_3 ;}
14 else if(nd()) { // Encodes ‘‘Start ::= x’’
15 I_0 = x_0; I_1 = x_1; I_2 = x_2; I_3 = x_3 ;}
16 else if(nd()) { // Encodes ‘‘Start ::= y’’
17 I_0 = y_0; I_1 = y_1; I_2 = y_2; I_3 = y_3 ;}
18 else if(nd()) { // Encodes ‘‘Start ::= 1’’
19 I_0 = 1; I_1 = 1; I_2 = 1; I_3 = 1;}
20 else { // Encodes ‘‘Start ::= 0’’
21 I_0 = 0; I_1 = 0; I_2 = 0; I_3 = 0;}
22 }
23
24 bool spec(int x, int y, int f){
25 return (f>=x && f>=y && (f==x || f==y))
26 }
27
28 void main (){
29 int x_0 = 0; int y_0 = 1; // Input example (0 ,1)
30 int x_1 = 0; int y_1 = 0; // Input example (0 ,0)
31 int x_2 = 1; int y_2 = 1; // Input example (1 ,1)
32 int x_3 = 1; int y_3 = 0; // Input example (1 ,0)
33 Start(x_0 ,y_0 ,x_1 ,y_1 ,x_2 ,y_2 ,x_3 ,y_3);
34 assert ( !spec(x_0 ,y_0 ,I_0) || !spec(x_1 ,y_1 ,I_1)
35 || !spec(x_2 ,y_2 ,I_2) || !spec(x_3 ,y_3 ,I_3));
36 }

Figure 3.2: Program P[G2,E4] created during the course of proving the
unrealizability of (ψmax2(f, x,y),G2) using the set of input examples E4 =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

program constructed, P[G2,E4] (see Fig. 3.2).
As can be seen from the comments in the two programs, program P[G2,E4] has



48

the same basic structure as P[G2,E1].

• main begins with initialization statements for the four example inputs.

• Start has five cases that correspond to the five productions of G2.

The main difference is that because the encoding of G2 in Start uses non-
determinism, we need to make sure that along each path p in P[G2,E4], each of
the example inputs is used to evaluate the same expression-tree. We address this
issue by threading the expression-evaluation computations associated with each of
the example inputs through the same non-deterministic choices. That is, each of the
five “production cases” in Start has four encodings of the production’s semantics—
one for each of the four expression evaluations. By this means, the statements that
are executed along path p perform four simultaneous bottom-up evaluations of the
expression-tree from G2 that corresponds to p.

Programs P[G2,E2] and P[G2,E3] are similar to P[G2,E4], but their paths carry
out two and three simultaneous bottom-up evaluations, respectively. The actions
taken during rounds 2 and 3 to generate a new counter-example—and hence a
new example input—are similar to what was described for round 1. On round 4,
however, the program analyzer will determine that the assertion on lines (34)–(35)
always holds, which means that there is no path through P[G2,E4] for which the
behavioral specification holds for all of the input examples. This property means
that there is no expression-tree that satisfies the specification—i.e., the SyGuS
problem (ψmax2(f, x,y),G2) is unrealizable.

Our implementation uses the program-analysis tool SeaHorn [GKN15] as the
assertion checker. In the case of P[G2,E4], SeaHorn takes only 0.5 seconds to
establish that the assertion in P[G2,E4] always holds.

From Unrealizability to Unreachability

In this section, we show how a SyGuS problem for finitely many examples can be
reduced to a reachability problem in a non-deterministic, recursive program in an
imperative programming language.
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Reachability Problems

A program P takes an initial state I as input and outputs a final state O, i.e., JPK(I) =
O where J·K denotes the semantic function of the programming language. As
illustrated in §3.3, we allow a program to contain calls to an external function nd(),
which returns a non-deterministically chosen Boolean value. When program P

contains calls to nd(), we use P̂ to denote the program that is the same as P except
that P̂ takes an additional integer input n, and each call nd() is replaced by a call to
a local function nextbit() defined as follows:

bool nextbit(){bool b = n%2; n=n>>1; return b;}.

In other words, the integer parameter n of P̂[n] formalizes all of the non-deterministic
choices made by P in calls to nd().

For the programs P[G,E] used in our unrealizability algorithm, the only calls to
nd() are ones that control whether or not a production is selected from grammar G
during a top-down, left-to-right generation of an expression-tree. Given n, we can
decode it to identify which expression-tree n represents.

Example 3.6. Consider again the SyGuS problem (ψmax2(f, x,y),G2) discussed in §3.3. In
the discussion of the initial program P[G2,E1] (Fig. 3.1), we hypothesized that the program
analyzer chose to report path (3.1) in P, for which the sequence of non-deterministic choices
is t, f, t, f, f, f, t. That sequence means that for P̂[n], the value of n is 1000101 (base 2)
(or 69 (base 10)). The 1s, from low-order to high-order position, represent choices of
production instances in a top-down, left-to-right generation of an expression-tree. (The
0s represent rejected possible choices.) The rightmost 1 in n corresponds to the choice
in line (3) of “Start ::= Plus(Start, Start)”; the 1 in the third-from-rightmost
position corresponds to the choice in line (10) of “Start ::= x” as the left child of the
Plus node; and the 1 in the leftmost position corresponds to the choice in line (12) of

“Start ::= 1” as the right child. By this means, we learn that the behavioral specification
ψmax2(f, x,y) holds for the example set E1 = {(0, 1)} for f 7→ Plus(x,1).
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Definition 3.7 (Reachability Problem). Given a program P̂[n], containing assertion
statements and a non-deterministic integer input n, we use reP to denote the corresponding
reachability problem. The reachability problem reP is satisfiable if there exists a value n
that, when bound to n, falsifies any of the assertions in P̂[n]. The problem is unsatisfiable
otherwise.

Reduction to Reachability

The main component of our framework is an encoding enc that given a SyGuS
problem syE = (ψE(f, x),G) over a set of examples E = {c1, . . . , ck}, outputs a
program P[G,E] such that syE is realizable if and only if reenc(sy,E) is satisfiable.
In this section, we define all the components of P[G,E], and state the correctness
properties of our reduction.

Remark: In this section, we assume that in the specification ψ(f, x) every occurrence
of f has x as input parameter. We show how to overcome this restriction in §3.3. In
the following, we assume that the input x has type τI, where τI could be a complex
type—e.g., a tuple type.

Program construction. Recall that the grammar G is a tuple (N,Σ,S,a, δ). First,
for each non-terminal A ∈ N, the program P[G,E] contains k global variables
{g_1_A, . . . , g_k_A} of type a(A) that are used to express the values resulting from
evaluating expressions generated from non-terminal A on the k examples. Second,
for each non-terminal A ∈ N, the program P[G,E] contains a function

void funcA(τI v1, . . . , τI vk){ bodyA }

We denote by δ(A) = {r1, . . . , rm} the set of production rules of the form A→ β

in δ. The body bodyA of funcA has the following structure:

if(nd()) {Enδ(r1)}

else if(nd()) {Enδ(r2)}

. . .
else {Enδ(rm)}



51

The encoding Enδ(r) of a production r = A0 → b(j)(A1, · · · ,Aj) is defined as
follows (τi denotes the type of the term Ai):

funcA1(v1,…,vk);
τ1 child_1_1 = g_1_A1; . . . ; τ1 child_1_k = g_k_Aj;
. . .
funcAj(v1,…,vk);
τj child_j_1 = g_1_A1; . . . ; τj child_j_k = g_k_Aj;
g_1_A0 = enc1

b(child_1_1, . . . , child_1_k)
. . .
g_k_A0 = enckb(child_j_1, . . . , child_j_k)

Note that if b(j) is of arity 0—i.e., if j = 0—the construction yields k assignments of
the form g_m_A0 = encmb ().

The function encmb interprets the semantics of b on themth input example. We
take Linear Integer Arithmetic as an example to illustrate how encmb works.

encm0(0) := 0 encm1(0) := 1
encmx(0) := vi encmEquals(2)(L,R) := (L=R)

encmPlus(2)(L,R) := L+R encmMinus(2)(L,R) := L-R
encmIfThenElse(3)(B,L,R) := if(B) L else R

We now turn to the correctness of the construction. First, we formalize the
relationship between expression-trees in L(G), the semantics of P[G,E], and the
number n. Given an expression-tree e, we assume that each node q in e is annotated
with the production that has produced that node. Recall that δ(A) = {r1, . . . , rm}
is the set of productions with head A (where the subscripts are indexes in some
arbitrary, but fixed order). Concretely, for every node q, we assume there is a
function pr(q) = (A, i), which associates q with a pair that indicates that non-
terminal A produced n using the production ri (i.e., ri is the ith production whose
left-hand-side non-terminal is A).

We now define how we can extract a number #(e) for which the program P̂[#(e)]
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will exhibit the same semantics as that of the expression-tree e. First, for every node
q in e such that pr(q) = (A, i), we define the following number:

#nd(q) =


1 0 · · · 0︸ ︷︷ ︸

i−1

if i < |δ(A)|

0 · · · 0︸ ︷︷ ︸
i−1

if i = |δ(A)|.

The number #nd(q) indicates what suffix of the value of n will cause funcA to trigger
the code corresponding to production ri. Let q1 · · ·qm be the sequence of nodes
visited during a pre-order traversal of expression-tree e. The number corresponding
to e, denoted by #(e), is defined as the bit-vector #nd(qm) · · · #nd(q1).

Finally, we add the entry-point of the program, which calls the function funcS
corresponding to the initial non-terminal S, and contains the assertion that encodes
our reachability problem on all the input examples E = {c1, . . . , ck}.

void main(){
τI x1 = c1; · · · ;τI xk = ck;
funcS(x1, . . . , xk);
assert

∨
16i6k ¬ψ(f, ci)[g_i_S/f(x)]; // At least one ci fails }

Correctness. We first need to show that the function #(·) captures the correct language
of expression-trees. Given a non-terminal A, a value n, and input values i1, . . . , ik,
we use JfuncA[n]K(i1, . . . , ik) = (o1, . . .ok) to denote the values of the variables
{g_1_A, . . . , g_k_A} at the end of the execution of funcA[n] with the initial value of
n = n and input values x1, . . . , xk. Given a non-terminal A, we write L(G,A) to
denote the set of terms that can be derived starting with A.

Lemma 3.8. LetA be a non-terminal, e ∈ L(G,A) an expression, and {i1, . . . , ik} an input
set. Then, (JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik).

Proof. The proof is by structural induction on e. Let q denote the root of e, and
A → σ(j)(A1, . . . ,Aj) denote the production instance at q. Note that #(e) =
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#(ej) · · · #(e1)#nd(q).
Suppose that e = q is a leaf node; that is, the tree at q is an instance of a

production of the form A → q(0). Because #(e) = #nd(q(0)), for every input
set {i1, . . . , ik}, funcA[#(e)] selects the branch in funcA that captures the seman-
tics of A→ q(0). In that code, e is evaluated on the k values {i1, . . . , ik}. Therefore,
(JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik) holds.

Inductive step: Let e = σ(j)(e1, . . . , ej), where the property to be shown is
assumed to hold for each of the el. For each el, let ql be the root of el.

The procedure funcA[#(e)] uses #nd(q) to select the branch B in funcA that
captures the semantics of the production A → σ(j)(A1, . . . ,Aj). For every in-
put set {i1, . . . , ik}, the induction hypothesis ensures that the following property
holds: for 1 6 l 6 j, (JelK(i1), . . . , JelK(ik)) = JfuncAl[#(el)]K(i1, . . . , ik). There-
fore, each call to a procedure funcAl in B computes the k intermediate answers
that correspond to the evaluation of el on the k values {i1, . . . , ik}. The code in
B that follows the final call to funcAj uses the collections of intermediate results
to finish k computations of the semantics of A → σ(j)(A1, . . . ,Aj). Therefore,
(JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik) holds.

Each procedure funcA[n](i1, . . . , ik) that we construct has an explicit dependence
on variable n, where n controls the non-deterministic choices made by the funcA
and procedures called by funcA. As a consequence, when relating numbers and
expression-trees, there are two additional issues to contend with:

Non-termination. Some numbers can cause funcA[n] to fail to terminate. For in-
stance, if the case for “Start ::= Plus(Start, Start)” in program P[G2,E1]

from Fig. 3.1 were moved from the first branch (lines (3)–(8)) to the final
else case (line (13)), the number n = 0 = . . . 0000000 (base 2) would cause
Start to never terminate, due to repeated selections of Plus nodes. However,
note that the only assert statement in the program is placed at the end of the
main procedure. Now, consider a value of n such that reenc(sy,E) is satisfiable.
Defn. 3.7 implies that the flow of control will reach and falsify the assertion,
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which implies that funcA[n] terminates. 4

Shared suffixes of sufficient length. In Ex. 3.6, we showed how for program
P[G2,E1] (Fig. 3.1) the number n = 1000101 (base 2) corresponds to the
top-down, left-to-right generation of Plus(x,1). That derivation consumed
exactly seven bits; thus, any number that, written in base 2, shares the suffix
1000101—e.g., 11010101000101—will also generate Plus(x,1).

The issue of shared suffixes is addressed in the following lemma:

Lemma 3.9. For every non-terminal A and number n such that JfuncA[n]K(i1, . . . , ik) 6=
⊥ (i.e., funcA terminates when the non-deterministic choices are controlled by n), there
exists a minimal n ′ that is a (base 2) suffix of n for which (i) there is an e ∈ L(G) such
that #(e) = n ′, and (ii) for every input {i1, . . . , ik}, we have JfuncA[n]K(i1, . . . , ik) =

JfuncA[n ′]K(i1, . . . , ik).

Proof. Assume that the computation JfuncA[n]K(i1, . . . , ik) terminates. Let b1, . . . ,bj
be the finite sequence of bits drawn by nd() throughout the computation.
Proof of (i): Let e be the expression-tree generated top-down, left-to-right using
the sequence b1, . . . ,bj. Let n ′ be the binary number bj · · ·b1. Because #(e) is the
concatenation, in right-to-left order, of the sequence of #(·) values for the nodes of
e visited during a pre-order traversal, #(e) = n ′.
Proof of (ii): Property (ii) holds because n and n ′ agree on the (base 2) suffix
bj · · ·b1, and exactly j bits are used during the executions of both funcA[n](i1, . . . , ik)
and funcA[n ′](i1, . . . , ik)—which also shows that n ′ = bj · · ·b1 (base 2) is minimal.

We are now ready to state the correctness property of our construction.

Theorem 3.10. Given a SyGuS problem syE = (ψE(f, x),G) over a finite set of examples
E, the problem syE is realizable iff reenc(sy,E) is satisfiable.

4If the SyGuS problem deals with the synthesis of programs for a language that can express
non-terminating programs, that would be an additional source of non-termination, different from
that discussed in item Non-termination. That issue does not arise for LIA SyGuS problems. Dealing
with the more general kind of non-termination is postponed for future work.
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Proof. ⇒ direction: Assume that syE is realizable. Then there exists an expression
e ∈ L(G) = L(G,S) such that ∀x ∈ E.ψ(JeK, x). By Lemma 3.8, for every {i1, . . . , ik},
(JeK(i1), . . . , JeK(ik)) = JfuncA[#(e)]K(i1, . . . , ik). Hence, the assertion in program
enc(sy,E) is false and the reachability problem reenc(sy,E) is satisfiable.

⇐ direction: Assume that reenc(sy,E) is satisfiable. Then there exists a value of n that
makes the assertion in program enc(sy,E) false (i.e., the specification holds for all
inputs ci ∈ E). By Lemma 3.9, there exists a minimal n ′ for which the program
has equivalent semantics (in particular, the assertion in enc(sy,E) is still false), and
there exists an expression e ∈ L(G) such that #(e) = n ′. Hence, e is a solution to
SyGuS problem syE; i.e., syE is realizable.

Encoding in the Presence of Nested Function-Invocations

In §3.3, we presented a simplified encoding that relied on the specification ψ(f, x)
to only involve function invocations of the form f(x), where x represents the input
parameter of the function to be synthesized. In this section, we show with a simple
example how such a restriction can be overcome.

Consider the following semantic specification that involves multiple invocations
of the function f on different arguments, as well as nested function calls:

ψ1(f, x)
def
= f(f(x)) = f(x+ x).

By introducing new input variables and performing the proper refactoring, we can
rewrite ψ1 as the following specification, where f is always called on a single input
variable:

ψ2(f, x,y1,y2,y3,y4)
def
=

[
f(x) = y1 ∧ f(y1) = y2

∧ x+ x = y3 ∧ f(y3) = y4

]
→ y2 = y4.

It is now easy to adapt our encoding to operate over this new specification.
First, the program P[G,E] will now operate over input examples of the form
c = {w1, . . . ,wk}, where each example c is a tuple corresponding to the values
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of variables {x,y1,y2,y3,y4}. Second, the program will need to compute the values
of all possible calls of f on the various input parameters. Hence, for every expression
f(z) in ψ2, non-terminal A, and example wi, the program P[G,E] will have a global
variable z_i_A computing the value of the expression generated by A parametrized
by z, with respect to the values in input example wi.

For instance, assume that the input grammar has a production A → π1 that
generates an access on the first parameter of the function to be synthesized, and
assume that we currently only have one input example. The corresponding code
for the production would be

funcA (int v_x, int v_y1, int v_y2, int v_y3, int v_y4) {
if(nd()) {

x_1_A = v_x; // Computing f(x)

y1_1_A = v_y1; // Computing f(y1)

y3_1_A = v_y3; // Computing f(y3)

}
...

In summary, thanks to the ability to execute a finite number of inputs in lock-step,
our encoding can handle specifications that contain nested function-invocations.

Overcoming a Quirk of SeaHorn

Because SeaHorn is unsound for satisfiability, it can report that some expression-
tree satisfies behavioral specification ψ, when in fact no such expression-tree exists.
In effect, SeaHorn overapproximates the set of reachable states, and erroneously
concludes that the assertion in reenc(sy,E) can be falsified (i.e., all example inputs
satisfy ψ). We encountered this situation in our experiments; for some unknown
reason, when the following two productions were included in the grammar, Sea-
Horn would report that reenc(sy,E) was satisfiable in cases when it should have
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reported unsatisfiable:

BExpr ::= Not(BExpr) | And(BExpr, BExpr) (3.2)

For the examples on which this happened, we found that we could delete these
two productions, which resulted in a grammar of equivalent expressiveness. That
is, because the grammar still contained the IfThenElse operator, for all expres-
sions e1, e2, e3, and e4, the expression IfThenElse(Not(e1), e2, e3) is equivalent to
IfThenElse(e1, e3, e2), and the expression IfThenElse(And(e1, e2), e3, e4) is equiv-
alent to IfThenElse(e1, IfThenElse(e2, e3, e4), e4). When we ran the same SyGuS
problem sy with productions (3.2) removed from the grammar, SeaHorn reported
that reenc(sy,E) was unsatisfiable. Because SeaHorn is sound for unsatisfiability,
the latter is the correct answer, and demonstrates that SyGuS problem sy (in both
modified and unmodified form) is unrealizable.

Because the expressibility of the grammar is unchanged with and without
productions (3.2), these examples demonstrate that the effect is caused by some
overapproximation made by SeaHorn, triggered by productions (3.2) and the
encoding described in §3.3.

3.4 Unrealizability as Grammar Flow Analysis

Illustrative Example

SyGuS problems in LIA. Consider the SyGuS problem in which the goal is to create a
term ef whose meaning is ef(x) := 2x + 2, but where ef is in the language of the
following regular tree grammar G1:5

Start ::= Plus(Var(x), Var(x), Var(x), Start) | Num(0) (3.3)

5 For readability, we allow grammars to contain n-ary Plus symbols and trees. In the next
sections, we will write the grammar G1 as follows:

Start ::= Plus(S1, Start) | Num(0) S1 ::= Plus(S2, Var(x))
S2 ::= Plus(S3, Var(x)) S3 ::= Var(x).
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This problem is unrealizable because every term in the grammar G1 is of—in
essence—the form 3kx (with k > 0).

A typical synthesizer tries to solve this problem using a counterexample-guided
inductive synthesis (CEGIS) strategy that searches for a program consistent with a
finite set of examples E. Here, let’s assume that the initial input example in E is i1,
which has x set to 1—i.e i1(x) = 1. For this example, the input i1 corresponds to the
output o1 = 4.

In this particular case, there exists no term in the grammar G1 that is consistent
with the example i1. To prove that this grammar does not contain a term that is
consistent with the specification on the example i1, we compute for each nonterminal
A a value n1,E(A)

6 that describes the set of values any term derived from A can
produce when evaluated on i1—i.e., γ(n1,E(A)) ⊇ {JeK(i1) | e ∈ LG1(A)}, where, as
usual in abstract interpretation, γ denotes the concretization function. As we show
in §3.4, for n1,E(A) to be an overapproximation of the set of output values that any
term derived fromA can produce for the current set of examples E, it should satisfy
the following equation:

n1,E(Start) = JPlusK#
E(JVar(x)K#

E, JVar(x)K#
E, JVar(x)K#

E,n1,E(Start))⊕ JNum(0)K#
E.

(3.4)

For every term e, the notation JeK#
E denotes an abstract semantics of e—i.e., JeK#

E

overapproximates the set of values e can produce when evaluated on the examples
in E—and ⊕ denotes the join operator, which overapproximates ∪.

In this example, we represent each n1,E(A) using a semi-linear set—i.e., a set
of terms {l1, . . . , ln}, where each li is a term of the form c + λ1c1 + · · · + λkck

(called a linear set), the values λi ∈ N are parameters, and the values cj ∈ Z are
fixed coefficients. We then replace each JeK#

E with a corresponding semi-linear-set
interpretation. For example, JVar(x)K#

E is the vector of inputs E projected onto the
x coordinate—i.e., JVar(x)K#

E = {i1(x)} = {1}. We rewrite JPlusK#
E as ⊗, with x ⊗ y

6This section uses a simplified notation for readability. In §3.4 the term n1,E(A) is written nG1E

where G1 is used to denote a GFA problem.
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being the semi-linear set representing {a+ b | a ∈ x,b ∈ y}
We rewrite Eqn. (3.4) to use semi-linear sets:

n1,E(Start) = ({1}⊗ {1}⊗ {1}⊗ n1,E(Start))⊕ {0}, (3.5)

where x⊕y is the semi-linear set representing {a | a ∈ x∨a ∈ y}. These operations
can be performed precisely.

In this example, an exact solution to this set of equations is the semi-linear set
n1,E(Start) = {0+λ3}, which describes the set of all possible values produced by any
term in grammar G1 for the set of examples E = 〈i1〉. In particular, such a solution
can be computed automatically [EKL10].7 This SyGuS problem does not have a
solution, because none of the values in n1,E(Start) meets the specification on the
given input example, i.e., the following formula is not satisfiable:

∃λ.[i1 = 1 ∧ o1 = 0 + λ3 ∧ λ > 0]∧ o1 = 2i1 + 2. (3.6)

SyGuS problems in CLIA. For grammars with a more complex background theory,
such as CLIA (LIA with conditionals), it may be more complicated to compute
an overapproximation of the possible outputs of any term in the grammar. For
example, consider the SyGuS problem where once again the goal is to synthesize
a term whose meaning is ef(x) := 2x + 2, but now in the more expressive CLIA
grammar G2:

Start ::= IfThenElse(BExp,Exp3, Start) | Exp2 | Exp3
BExp ::= LessThan(Var(x), Num(2))

| LessThan(Num(0), Start) | And(BExp,BExp)
Exp2 ::= Plus(Var(x), Var(x),Exp2) | Num(0)
Exp3 ::= Plus(Var(x), Var(x), Var(x),Exp3) | Num(0)

(3.7)

7Some intuition can be gained by thinking of Eqn. (3.5) as being similar to a context-free grammar
of the form X := aX | b, which has the regular-language solution a∗b. Similarly, Eqn. (3.5) has the
solution {3}~ ⊗ {0}. Here ~ is the iterated addition of the (trivial) semi-linear set {3}, so the overall
solution is {0 + 3λ | λ ∈ N}.
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Consider again the input example i1=1 with output o1=4. The candidate term
Plus(Var(x), Var(x), Plus(Var(x), Var(x), Num(0))) in this grammar is correct on
the input i1. A SyGuS solver that enumerates all terms in the grammar will find
this term, test it on the given specification, see that it is not correct on all inputs,
and produce a counterexample. In this case, suppose that the counterexample is
i2 where i2(x)=2 with the corresponding output o2=6. There is no term in G2 that
is consistent with both of these examples, and we will prove this fact like we did
before, that is, by solving the following set of equations:8

n2,E(Start) = JIfThenElseK#
E(n2,E(BExp),n2,E(Exp3),

n2,E(Start))⊕ n2,E(Exp2)⊕ n2,E(Exp3)
n2,E(BExp) = JLessThanK#

E(JVar(x)K#
E, JNum(2)K#

E)

⊕ JLessThanK#
E(JNum(0)K#

E,n2,E(Start))
⊕ JAndK#

E(n2,E(BExp),n2,E(BExp))

n2,E(Exp2) = JPlusK#
E(JVar(x)K#

E, JVar(x)K#
E,n2,E(Exp2))

⊕ JNum(0)K#
E

n2,E(Exp3) = JPlusK#
E(JVar(x)K#

E, JVar(x)K#
E, JVar(x)K#

E,
n2,E(Exp3))⊕ JNum(0)K#

E

(3.8)

Because we want to track the possible values each term can have for both examples,
we need a domain that summarizes vectors of values. Luckily, semi-linear sets can
easily be extended to vectors—i.e., each li in a semi-linear set sl is a linear set of
the form {~v0 + λ1~v1 + · · · + λk~vk | λi ∈ N} (with ~vj∈Zk). Second, because some
nonterminals are Boolean-valued and some are integer-valued, we need different
representations of the possible outputs of each nonterminal. We will use semi-
linear sets for n2,E(Start), n2,E(Exp2) and n2,E(Exp3), and a set of Boolean vectors
for n2,E(BExp)—e.g., n2,E(BExp) could be a set {(t, f), (t, t)}, which denotes that a
Boolean expression generated by BExp can be true for i1 and false for i2, or true for

8Note that the ⊕ symbol is overloaded. On the right-hand side of n2,E(BExp), ⊕ is an operation
on an abstract Boolean value, whereas the ⊕ on the right-hand-side of the other equations is an
operation on semi-linear sets. Both operations denote set union, and are handled in a uniform way
by operating over a multi-sorted domain of Booleans and semi-linear sets.
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both. We can now instantiate all constant terminals and variable terminals with
their abstraction, e.g., JVar(x)K#

E with {(1, 2)} and JNum(0)K#
E with {(0, 0)}.

We then start solving part of our equations by observing that Exp2 and Exp3
are only recursive in themselves. Therefore, we can compute their summaries
independently, obtaining n2,E(Exp2) = {(0, 0) + λ(2, 4)},n2,E(Exp3) = {(0, 0) +
λ(3, 6)}. We can now replace all instances of n2,E(Exp2) and n2,E(Exp3), and obtain
the following set of equations:

n2,E(Start) = JIfThenElseK#
E(n2,E(BExp), {(0, 0) + λ(3, 6)},

n2,E(Start))⊕ {(0, 0) + λ(2, 4)}
⊕ {(0, 0) + λ(3, 6)}

n2,E(BExp) = {(t, f)}⊕ JLessThanK#
E({(0, 0)},n2,E(Start))

⊕ JAndK#
E(n2,E(BExp),n2,E(BExp))

(3.9)

We now have to face the problem of solving equations over n2,E(BExp) and
n2,E(Start), which represent different types of values and are mutually recursive.
Because the domain of n2,E(BExp) is finite (it has at most 2|E| elements), we can
solve the equations iteratively until we reach a fixed point for both variables. In par-
ticular, we initialize all variables to the empty set and evaluate right-hand sides, so
n0

2,E(BExp) = {(t, f)} (the superscript denotes the iteration the algorithm is in). We
can replace n2,E(BExp) with the value of n0

2,E(BExp) in the equation for n1
2,E(Start)

as follows:

n1
2,E(Start) = JIfThenElseK#

E({(t, f)}, {(0, 0) + λ(3, 6)},
n1

2,E(Start))⊕ {(0, 0) + λ(2, 4)}
⊕ {(0, 0) + λ(3, 6)}

(3.10)

At this point, we face a new problem: we need to express the abstract semantics of
IfThenElse using the semi-linear set operators ⊕ and ⊗. In particular, we would
like to produce a semi-linear set in which, for each vector, some components come
from the semi-linear set for the then-branch (i.e., values corresponding to inputs
for which the IfThenElse guard was true), and some components come from the
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semi-linear set for the else-branch (i.e., values corresponding to inputs for which
the IfThenElse guard was false). We overcome this problem by rewriting the above
equations as follows:

n1
2,E(Start(t,t)) = {(0, 0) + λ(3, 0)}⊗ n1

2,E(Start(f,t))

⊕ {(0, 0) + λ(2, 4)}⊕ {(0, 0) + λ(3, 6)}
n1

2,E(Start(f,t)) = {(0, 0) + λ(0, 0)}⊗ n1
2,E(Start(f,t))

⊕ {(0, 0) + λ(0, 4)}⊕ {(0, 0) + λ(0, 6)}

(3.11)

Intuitively, n1
2,E(Start(f,t)) is the abstraction obtained by only executing the expres-

sions generated by Start on the second example and leaving the output of the first
example as 0 to represent the fact that only the example i2 followed the else branch
of the IfThenElse statement. Similarly, the semi-linear set {(0, 0) + λ(3, 0)} zeroes
out the second component of the semi-linear set appearing in the then branch. The
value of n1

2,E(Start(t,t)) (which is also the value of n1
2,E(Start)), is then computed by

summing (⊗) together the then and else values. This set of equations is now in the
form that we can solve automatically—i.e., it only involves the operations ⊕ and ⊗
over semi-linear sets—and thus we can compute the value of n1

2,E(Start). We now
plug that value into the equation for BExp and compute the value of n1

2,E(BExp),

n1
2,E(BExp) = {(t, f)}⊕ JLessThanK#

E({(0, 0)},n1
2,E(Start))

⊕ JAndK#
E(n

1
2,E(BExp),n1

2,E(BExp))
(3.12)

Becausen1
2,E(BExp) has a finite domain, equations over such a domain can be solved

iteratively, in this case yielding the fixed-point value n1
2,E(BExp) = {(t, f), (t, t), (f, f)}.

We now plug this solution into the equation for Start and compute the value of
n2

2,E(Start) similarly to how we computed that of n1
2,E(Start). We then use n2

2,E(Start)
to compute n2

2,E(BExp) and discover that n2
2,E(BExp) = n1

2,E(BExp). Because we
have reached a fixed point, we have found the set of possible values the grammar
can output on our set of examples, i.e., the abstraction n1

2,E(Start) captures all
possible values the grammar G2 can output on E. By plugging such values in the
original formula similarly to what we did in Eqn. (3.6) we get that no output set
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satisfies the formula on the given input examples, and therefore this SyGuS problem
is unrealizable.

Grammar Flow Analysis

GFA is a formalism used for equipping the language of a grammar with a semantics
in which the meaning of a tree is a value from a (complete) combine semilattice.

Definition 3.11 (Combine Semilattice). A combine semilattice is an algebraic struc-
ture D = (D,⊕), where ⊕ : D×D→ D is a binary operation on D (called “combine”)
that is commutative, associative, and idempotent.9

Commutativity: For all d1,d2 ∈ D,d1 ⊕ d2 = d2 ⊕ d1.

Associativity: For all d1,d2,d3 ∈ D,d1 ⊕ (d2 ⊕ d3) = (d1 ⊕ d2)⊕ d1.

Idempotence: For all d ∈ D,d⊕ d = d.

A partial order, denoted by v, is induced on the elements of D as follows: for all d1,d2 ∈
D,d1 v d2 iff d1⊕d2 = d2. A combine semilattice is complete if it is closed under infinite
combines.

Definition 3.12. [GFA] [MW91, Ram96] Let D = (D,⊕) be a complete combine semi-
lattice. Recall that in a regular-tree grammar G = (N,Σ,S, δ), δ is a set of productions of
the form

X0 → g(X1, . . . ,Xk), with g ∈ Σ.

In a GFA problem G = (G,D), each production is associated with a production
function J·K# that provides an interpretation of g—i.e., JgK# : Dk → D.10 J·K# is extended

9We have chosen to use the neutral term “combine,” rather than meet or join, due to varying
nomenclature in the literature. In our applications, if the semilattice is oriented according to the
conventions of the abstract-interpretation literature, a combine-semilattice is a join-semilattice; if it
is oriented according to the conventions of the dataflow-analysis literature, it is a meet-semilattice.

10The definition above is a simplified version of GFA. In the usual definition, interpretations are
given via productions rather than alphabet symbols. That approach is somewhat more expressive
because if two productions use the same symbol, e.g., X0 → g(X1,X2) and X3 → g(X4,X5), the
production functions for the two productions are allowed to be different. We use the simplified
definition because we do not need this ability.
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to trees in L(G) in the usual way, by thinking of each tree e ∈ L(G) as a term over the
operations JgK#. Term e denotes a composition of functions, and corresponds to a unique
value in D, which we call JeK#

G (or simply JeK# when G is understood).
Let LG(X) denote the trees derivable from a nonterminal X. The grammar-flow-

analysis problem is to overapproximate, for each nonterminal X, the combine-over-all-
derivations valuemG(X) defined as follows:

mG(X) = ⊕e∈LG(X)JeK
#
G.

We can also associate G with a system of mutually recursive equations, where each
equation has the form

nG(X0) =X0→g(X1,...,Xk)∈δ JgK#(nG(X1), . . . ,nG(Xk)). (3.13)

We use nG(X) to denote the value of nonterminal X in the least fixed-point solution of
G’s equations.

In essence, GFA is about two ways of folding the semantics of terms onto non-
terminals:

Derivation-tree based: mG(X) defines the semantics of a term in a compositional
fashion, and folds all terms in LG(X) onto nonterminal X by combining (⊕)
their values.

Equational: nG(X) obtains a value for X by using the values of “neighboring”
nonterminals—i.e., nonterminals that appear on the right-hand side of pro-
ductions of X.

Furthermore, GFA ensures that for all X,mG(X) v nG(X).
The relevance of GFA for showing unrealizability is that whenever an RTG G

is recursive, L(G) is an infinite set of trees. Thus, in general, there is not a clear
method to compute the combine-over-all-derivations value mG(X) =

⊕
e∈L(G)JeK

#
G.

However, we can employ fixed-point finding procedures to computenG(X). Because
mG(X) v nG(X), our computed value will be a safe overapproximation.
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However, in some cases we have a stronger relationship between mG(X) and
nG(X). A production function JgK# is infinitely distributive in a given argument
position if

JgK#(. . . ,⊕j ∈ Jxj, . . .) = ⊕j∈JJgK#(. . . , xj, . . .)

where J is a finite or infinite index set.

Theorem 3.13. [MW91, Ram96] If every production function JgK#, g ∈ Σ, is infinitely
distributive in each argument position, then for all nonterminals X,mG(X) = nG(X).11

This theorem is key to our decision procedures for LIA and CLIA grammars,
because the domain of semi-linear sets has this property (§3.5).

Connecting GFA to Unrealizability

In this section, we show how GFA can be used to check whether a SyGuS problem
with finitely many examples E is unrealizable. Intuitively, we use GFA to overap-
proximate the set of values the expressions generated by the grammar can yield
when evaluated on a certain set of input examples E.

Definition 3.14. Let syE = (ψE,G) be a SyGuS problem with example set E, regular-tree
grammar G = (N,Σ,S, δ), and background theory T . Let J·KE be the semantics of trees in
LG(X) obtained via T , when µE(·) is used to interpret occurrences of terminals of G that
represent arguments to the function to be synthesized in the SyGuS problem.

Let D = (D,⊕) be a complete combine semilattice for which there is a concretization
function γ : D→ Val|E|, where Val is the type of the output values produced by the function
to be synthesized in the SyGuS problem. Let GE = (G,D) be a GFA problem that uses
µE(·) to interpret occurrences of terminals of G that represent arguments to the function to
be synthesized. Then

11Thm. 3.13 generalizes other similar theorems [KU77, SP81] about the coincidence of the val-
uations obtained from a path-based semantics (generalized in GFA to the derivation-tree-based
semantics {mG(X) | X ∈ N}) and an equational semantics ({nG(X) | X ∈ N}) when dataflow functions
distribute over the combine operator.
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1. GE is a sound abstraction of the semantics of LG(X) if

γ(mGE(X)) ⊇ {JeKE | e ∈ LG(X)}.

2. GE is an exact abstraction of the semantics of LG(X) if

γ(mGE(X)) = {JeKE | e ∈ LG(X)}.

By using such abstractions, including the one described in §3.4 based on semi-
linear sets (see §3.5 and §3.6), the results obtained by solving a GFA problem can
imply that a SyGuS problem with finitely many examples E is unrealizable.

The idea is that, given a SyGuS problem syE = (ψE,G) with example set
E, regular-tree grammar G = (N,Σ,S, δ), and background theory T , we can
(i) solve the GFA problem GE = (G,D) with some complete domain semilat-
tice D = (D,⊕) to obtain an overapproximation of γ(mGE(S)), and then (ii)
check if the approximation is disjoint from the specification, i.e., the predicate
~o ∈ γ(mGE(S))∧

∧
ij∈Eψ(~oj, ij) is unsatisfiable.

Checking that the previous predicate holds can be operationalized with the use
of symbolic concretization [RSY04] and an SMT solver. We view an abstract domain
D as (implicitly) a logic fragment LD of some general-purpose logic L, and each
abstract value as (implicitly) representing a formula in LD. The connection between
D and LD can be made explicit: we say that γ̂ is a symbolic-concretization operation
for D if γ̂(·,~o) : D→ LD maps each a ∈ D to a formula with free variables ~o, such
that [[γ̂(a,~o)]]L = γ(a). If γ̂ exists, we say that L supports symbolic concretization for
D.

Theorem 3.15. Let syE = (ψE,G) be a SyGuS problem with example set E, regular-tree
grammar G = (N,Σ,S, δ), and background theory T . Let D = (D,⊕) be a complete
combine semilattice, and GE = (G,D) be a grammar-flow-analysis problem over regular-
tree grammar G. Assume the theory T supports symbolic concretization of D. Let P be the
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property
P

def
= γ̂(nGE(S),~o)∧

∧
ij∈E

ψ(~oj, ij).

1. Suppose that GE is a sound abstraction of the semantics of L(G) with respect to
background theory T . Then syE is unrealizable if P is unsatisfiable.

2. Suppose that GE is an exact abstraction of the semantics of L(G) with respect to
background theory T . Then syE is unrealizable if and only if P is unsatisfiable.

Proof. Suppose γ̂(nGE(S),~o)∧
∧
ij∈Eψ(oj, ij) is unsatisfiable. By definition of sym-

bolic concretization this means 6 ∃~o ∈ [[γ̂(nGE(S),~o)]]L such that
∧
ij∈Eψ(oj, ij).

Equivalently
∀~o ∈ γ(nGE(S)) .

∨
ij∈E

¬ψ(oj, ij).

SincemGE(X) v nGE(X), the above implies

∀~o ∈ γ(mGE(S)) .
∨
ij∈E

¬ψ(oj, ij).

Since GE is a sound abstraction we have

∀~o ∈ {JeKE | e ∈ LG(S)} .
∨
ij∈E

¬ψ(oj, ij).

This property means that for every possible output vector of start symbol S there is
one coordinate that violates the specification. Thus, the problem is unrealizable.

Furthermore, if GE is an exact abstraction, and infinitely distributive, the above
properties are all equivalent. Thus, the above chain of reasoning also goes in the
reverse direction.

Algorithm for Showing Unrealizability

Algorithm 2 summarizes our strategy for showing unrealizability.
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Function :CheckUnrealizable(G,ψ,E)
Input : Grammar G, specification ψ, set of examples E
GE ← (G,D) // GFA problem from G and E (Def. 3.14) ;
s← nGE(Start) // Compute solution to the GFA problem;
if γ̂(s,~o)∧

∧
ij∈Eψ(oj, ij) is unsatisfiable then

return Unrealizable
end

return

{
Realizable, GE is an exact abstraction
Unknown, otherwise

Algorithm 2: Checking whether syE is unrealizable

Example 3.16. Recall the SyGuS problem, from §3.4, of synthesizing a function ef(x) =
2x + 2 using the grammar from Eqn. (3.3). Suppose that we call Algorithm 2 with the
example set E = {1}, and use the abstract domain of semi-linear sets. Algorithm 2 first
creates a GFA problem GE, which is shown as the recursive equation system given as
Eqn. (3.5). The solution of the GFA problem then gets assigned to s at line (2). In this
example, s is the semi-linear set {0 + λ3}. This set can be symbolically concretized as the
set of models of ∃λ > 0.o1 = 0 + λ3. Then, on line (2) the LIA formula ∃λ > 0.o1 =

0 + λ3 ∧ o1 = 2i1 + 2 ∧ i1 = 1 is passed to an SMT solver, which will return unsat.

GFA in Practice. So far we have been vague about how GFA problems are com-
putationally solved. In general, there is no universal method. The performance and
precision of a method depends on the choice of abstract domain D.

Kleene iteration. Traditionally one would employ Kleene iteration to find a least
fixed-point, nGE(X). However, Kleene iteration is only guaranteed to converge to
a least fixed-point if the domain D satisfies the finite-ascending-chain condition.
For example, the domain of predicate abstraction has this property, and therefore
Algorithm 2 could be instantiated with Kleene iteration and predicate abstraction
to attempt to show unrealizabilty, for arbitrary SyGuS problems. However, in the
rest of this chapter, we are focused on SyGuS problems using integer arithmetic,
which does have infinite ascending chains. Thus, while predicate abstraction, and
other domains without infinite ascending chains, can provide a sound abstraction



69

of LIA problems, they can never provide an exact abstraction. Alternatively, we
could still use Kleene iteration on a domain with infinite ascending chains if we
provide a widening operator, to ensure convergence [CH78]. The issue with this
strategy is that we are not guaranteed to achieve a least fixed-point. Such a method
would still be sound, but necessarily incomplete.

Constrained Horn clauses. Another incomplete, but general, method would employ
the use of the domain of constrained Horn clauses, (Φ,∨). The set Φ contains
all first-order predicates over some theory. The order of predicates is given by
P1(~v) 6 P2(~v) iff P1(~v) → P2(~v), for all models ~v. The production functions J·K# of
this GFA problem get translated to constraints on the predicates. The advantage of
using (Φ,∨) is that the resulting GFA problem is a Horn-clause program, which
we can then pass to an off-the-shelf, incomplete Horn-clause solver, such as the one
implemented in Z3 [DMB08]. In this case, Algorithm 2 would be slightly modified.
Horn-clause solvers do not provide an abstract description of the nonterminals.
Instead they determine satisfiabilty of a set of Horn clauses with respect to a
particular query. Therefore, in this case Algorithm 2 would use the formula in
line (2) as the Horn-clause query, instead of having a separate SMT check.

Example 3.17. The GFA problem in Eqn. (3.4) can be encoded using the following con-
strained Horn clause:

∀v, v ′. Start(v)← (v = 1 + 1 + 1 + v ′ ∧ Start(v ′))∨ v = 0 (3.14)

A Horn-clause solver can prove that the LIA SyGuS problem from §3.4 is unrealizable by
showing that the following formula is unsatisfiable: Eqn. (3.14)∧Start(o1)∧o1 = 2i1+2.

Newton’s Method. In the next two sections, we provide specialized complete
methods to solve GFA problems over LIA and CLIA grammars using Newton’s
method [EKL10]. Our custom methods are limited to the case of LIA and CLIA
grammars, but we show that the resulting solution is exact. No prior method has
this property for LIA and CLIA grammars. Consequently, our methods guarantee
that not only does the check on line (2) imply unrealizability on a set of exam-
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ples if the solver returns unsat, but also realizability if the solver returns sat. The
latter property is important because it ensures that the current set of examples is
insufficient to prove unrealizability, and we must generate more.

3.5 Proving Unrealizability of LIA SyGuS Problems
with Examples

In this section, we instantiate the framework underlying Algorithm 2 to obtain a
decision procedure for (un)realizability of SyGuS problems in linear integer arithmetic
(LIA), where the specification is given by examples. First, we review the conditions
for applying Newton’s method for finding the least fixed-point of a GFA problem
over a commutative, idempotent, ω-continuous semiring (§3.5). We then show
that the domain of semi-linear sets can be formulated as such a problem. This
approach provides a method to compute nGE(Start) for LIA SyGuS problems. We
then show that the domain of semi-linear sets is exact and infinitely distributive (§3.5).
Finally, we show that semi-linear sets admit symbolic concretization (§3.5). Thus,
by Thm. 3.15, we obtain a decision procedure for checking (un)realizability.

Solving Equations using Newton’s Method

We provide background definitions on semirings and Newton’s method for solving
equations over certain semirings.

Definition 3.18. A semiring S = (D,⊕,⊗, 0, 1) consists of a set of elementsD equipped
with two binary operations: combine (⊕) and extend (⊗). ⊕ and ⊗ are associative, and
have identity elements 0 and 1, respectively. ⊕ is commutative, and ⊗ distributes over ⊕.
For every x ∈ D, x⊗ 0 = 0 = 0⊗ x.

A semiring is commutative if for all a,b ∈ D, a⊗ b = b⊗ a.
Anω-continuous semiring is a semiring with the following additional properties:

1. The relation v def
= {(a,b) ∈ D⊗D | ∃d .a⊕ d = b} is a partial order.



71

2. Every ω-chain (ai)i∈N (i.e., for all i ∈ N ai v ai+1) has a supremum supi∈N ai
with respect to v.

3. Given an arbitrary sequence (ci)i∈N, define

⊕i∈Nci
def
= sup{c0 ⊕ c1 ⊕ . . .⊕ ci | i ∈ N}.

The supremum exists by (2) above. Then, for every sequence (ai)i∈N, for every b ∈ S,
and every partition (Ij)j∈J of N, the following properties all hold:

b⊗ (⊕i∈Nai) = ⊕i∈N (b⊗ ai) (⊕i∈Nai)⊗ b = ⊕i∈N (ai ⊗ b)
⊕j∈J

(
⊕i∈Ijai

)
= ⊕i∈Nai

The notation ai denotes the ith term in the sequence in which a0 = 1 and ai+1 = ai ⊗ a.
An ω-continuous semiring has a Kleene-star operator ~ : D→ D defined as follows:

a~ = ⊕i∈Nai.
A semiring is idempotent if for all a ∈ D, a⊕ a = a. In an idempotent semiring, the

order on elements is defined by a v b iff a⊕ b = b.

Recently, Esparza et al. [EKL10] developed an iterative method, called Newto-
nian Program Analysis (NPA), which solves a set of semiring equations by an iterative
computation. The technique does not operate on the equations themselves, but on
an augmented set of expressions created using a notion of a formal derivative of
the expressions on the equation system’s right-hand sides.

Lemma 3.19. [Newton’s Method [EKL10]] For a system of equations in N variables over
a commutative, idempotent,ω-continuous semiring, NPA reaches the least fixed point after
at most |N| iterations.

Lem. 3.19 is a powerful result because it applies even in cases when the semiring
has infinite ascending chains.
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Removing Non-Commutative Operators

Our first step towards using GFA to generate equations that can be solved using
Newton’s method removes non-commutative operators from the grammar.

We define the language LIA+,

TLIA+ ::= Plus(TLIA+ , TLIA+) | Num(c) | Var(x) | NegVar(x)

with the following semantics with respect to examples E:

JPlusKE(v1, v2) := v1 + v2 (3.15)

JNum(c)KE := 〈c, ..., c〉 (3.16)

JVar(x)KE := µE(x) (3.17)

JNegVar(x)KE := −µE(x) (3.18)

We say that a regular-tree grammar is an LIA+ grammar if all of its symbols are
in the alphabet {Plus, Num(c), Var(x), NegVar(x)}.

We next show how any LIA grammar can be rewritten into an LIA+ grammar
that accepts terms that are semantically equivalent to those in the original grammar.
We introduce a grammar-rewriting function h that recursively pushes negations to
the leaves of the terms in an LIA grammar G, to produce an LIA+ grammar h(G)
that does not contain the Minus symbol. Given an LIA grammarG = (N,Σ,SLIA, δ),
we define the rewritten grammar h(G) as the tuple (N∪N−,ΣLIA+ ,S, δ−) where δ−

is defined as follows. For every production X→ α ∈ δ:

• If α = Plus(X1,X2), then δ− contains the productions X− → Plus(X−
1 ,X−

2 ) and
X→ Plus(X1,X2);

• If α = Minus(X1,X2), then δ− contains the productions X− → Plus(X−
1 ,X2)

and X→ Plus(X1,X−
2 );
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• If α = Num(c), then δ− contains the productions X → Num(c) and X− →
Num(−c).

• If α = Var(x), then δ− contains the productions X → Var(x) and X− →
NegVar(x).

It is trivial to see that the grammar h(G) only produces terms in LIA+.

Example 3.20. Consider the LIA grammar G:

Start ::= Minus(Start, Start) | 1 | x

The following LIA+ grammar h(G) is equivalent to G:

Start ::= Plus(Start, Start−) | Num(1) | Var(x)
Start− ::= Plus(Start−, Start) | Num(−1) | NegVar(x).

The following lemma shows that the original and the rewritten grammars
produce semantically equivalent terms.

Lemma 3.21. An LIA grammar G is semantically equivalent to the LIA+ grammar h(G),
i.e.,

(∀e ∈ L(G)∃e ′ ∈ L(h(G)).JeK = Je ′K) (3.19)

∧ (∀e ′ ∈ L(h(G))∃e ∈ L(G).JeK = Je ′K) . (3.20)

Proof. We start by proving the following result, which states that the terms produced
by some nonterminal X inG are equivalent to terms produced by the corresponding
nonterminal X in h(G), and to the negation of terms produced by the corresponding
negative nonterminal X− in h(G):
(i)
(
∀e ∈ LG(X)∃e ′ ∈ Lh(G)(X).JeK = Je ′K

)
∧
(
∀e ′ ∈ Lh(G)(X)∃e ∈ LG(X).JeK = Je ′K

)
,

and
(ii)

(
∀e ∈ LG(X)∃e ′ ∈ Lh(G)(X

−).JeK = Je ′K
)
∧
(
∀e ′ ∈ Lh(G)(X

−)∃e ∈ LG(X).JeK = −Je ′K
)

.
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We proceed by induction on e. The base cases are e = Num(c) and e = Var(x).
According to the definition of h, there exists productions X → Num(c) (resp.,
X → Var(x)) and X → Num(−c) (resp., X → NegVar(x)) in h(G). Note that
JNum(c)K = −JNum(−c)K and JVar(x)K = −JNegVar(x)K. Hence, the property
holds for the base cases.

Now the induction step is

• Assume e = Plus(e1, e2) where e1 and e2 are terms produced by nonterminals
X1 and X2, respectively. According to the induction hypothesis, X1 in h(G)
can produce a term e ′1 equivalent to e1 and X2 in h(G) can produce a term e ′2

equivalent e2. Therefore the nonterminal X in h(G) can produce Plus(e ′1, e ′2)
whose semantics is equivalent to e. The analysis for X− in h(G) is similar.

• Assume e = Minus(e1, e2) where e1 and e2 are terms produced by non-
terminals X1 and X2, respectively. According to the induction hypothe-
sis, X1 in h(G) can produce a term e ′1 equivalent to e1 and X−

2 in h(G)

can produce a term e ′2 such that Je ′2K = −Je2K Therefore the nonterminal
X in h(G) can produce Plus(e ′1, e ′2) whose semantic is equivalent to e, i.e.,
JPlus(e ′1, e ′2)K = Je ′1K − Je2K = JMinus(e1, e2)K. The analysis for X− in h(G) is
similar.

Finally, terms produced by Start inG are semantically equivalent to terms produced
by Start in h(G), and hence G is semantically equivalent to h(G)

Grammar Flow Analysis using Semi-Linear Sets

Thanks to §3.5, we can assume that the SyGuS grammar G only produces LIA+

terms. In this section, we use grammar-flow analysis to generate equations such
that the solutions to the equations assign a semi-linear set to each nonterminal X
that, for the finitely many examples in E, exactly describes the set of possible values
produced by any term in LG(X).

We start by defining the complete combine semilattice (SL,⊕) of semi-linear sets.
We then use them, together with the set of examples E, to define a specific family
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of GFA problems: GE = (G, SL), where G = (N,Σ,S, δ) is an LIA+ grammar. For
simplicity, we use notation SL for both the semilattice and its domain

In the terminology of abstract interpretation, SL is an abstract domain that we
can use to represent, for every nonterminal X, the set of possible output vectors
produced by evaluating each term in LG(X) on the examples in E. Moreover, the
representation is exact; i.e., γ(mGE(X)) = {JeKE | e ∈ LG(X)} where γ denotes the
usual operation of concretization.

Definition 3.22 (Semi-linear Set). A linear set 〈~u, {~v1, · · · ,~vn}〉 denotes the set of integer
vectors {~u + λ1~v1 + · · · + λn~vn | λ1, . . . , λn ∈ N}, where ~u,~v1, ...,~vn ∈ Zd and d is the
dimension of the linear set. A semi-linear set is a finite union

⋃
i〈~ui,Vi〉 of linear sets, also

denoted by {〈~ui,Vi〉}i.
The concretization of a semi-linear set sl = {〈~ui,Vi〉}i, denoted by γ(sl), is the set of

vectors ⋃
i

{~ui + λ1,i~v1,i + · · ·+ λn,i~vn,i | λ1,i, . . . , λn,i ∈ N}.

Semi-linear sets were originally used in a well-known result in formal-language
theory: Parikh’s theorem [Par66]. Parikh’s theorem states that, given a context-
free grammar G with terminals (t1, . . . , tn), if one looks only at the number of
occurrences of each terminal symbol in each word in a context-free language,
without regard to their order—i.e., each word w is represented by a vector vw =

〈c1, . . . , cn〉, which denotes that each terminal ti appears exactly ci times in w—the
set of vectors {vw | w ∈ L(G)} is representable by a semi-linear set. If a grammar
for an LIA SyGuS problem only uses addition (which is a commutative operation),
we can represent any term in the language of the grammar by simply counting the
number of times each terminal (i.e., a constant or a variable) appears in the term.
Consequently, we can use a domain of values similar to the ones used in Parikh’s
theorem to represent the set of possible terms (or, more precisely, their semantics)
as a semi-linear set.

While the details of Parikh’s theorem are not relevant to this chapter, the core
idea behind its proof is that grammars over commutative operators can be trans-
formed into regular languages and therefore regular expressions. Then, to compute
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the set of all possible count vectors that the grammar can produce one needs to “eval-
uate” the regular expressions using operators analogous to the regular-expression
concatenation, union, and star. For semi-linear sets, these operators are ⊗, ⊕ and
~, defined as follows [BET03]:

{〈~u1,i,V1,i〉}i ⊕ {〈~u2,j,V2,j〉}j = {〈~u1,i,V1,i〉}i ∪ {〈~u2,j,V2,j〉}j
{〈~u1,i,V1,i〉}i ⊗ {〈~u2,j,V2,j〉}j =

⋃
i,j

{〈~u1,i + ~u2,j,V1,i ∪ V2,j〉}

({〈~ui,Vi〉}i)~ = {〈~0,
⋃
i

({~ui} ∪ Vi)〉} (3.21)

The semi-linear sets 0 def
= ∅ and 1 def

= {〈~0, ∅〉} are the identity elements for ⊕ and
⊗, respectively. We use (SL,⊕) to denote the complete combine semilattice of
semi-linear sets with the least element 0.

We define the GFA problem GE = (G, SL) by giving the following interpretations
to LIA+ operators:

JPlusK#
E(sl1, sl2)=sl1 ⊗ sl2 (3.22)

JNum(c)K#
E= {〈〈c, · · · , c〉, ∅〉} (3.23)

JVar(x)K#
E= {〈µE(x), ∅〉} (3.24)

JNegVar(x)K#
E= {〈−µE(x), ∅〉} (3.25)

Now consider the combine-over-all-derivations value mGE(X) =
⊕
e∈LG(X)JeK

#
E

for the grammar-flow-analysis problem GE. For an arbitrary tree e ∈ LG(X), in
the computation of JeK#

E via Eqns. (3.22)–(3.25), there is never any use of the ⊕
operation of SL. Consequently, the computation of JeK#

E produces a semi-linear
set that consists of a single vector—the same vector, in fact, that is produced by the
computation of JeKE shown in Ex. ??. In particular, ⊕ two lines above Eqn. (3.21)
preserves singleton sets, and hence for singleton sets, ⊗ one line above Eqn. (3.21)
emulates JPlusKE. Therefore, the combine-over-all-derivations value mGE(X) =⊕
e∈LG(X)JeK

#
E is exactly the set of vectors {JeKE | e ∈ LG(X)}. In other words,
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mGE(X) is an exact abstraction of the J·KE semantics of the terms in LG(X), i.e.,
γ(mGE(X)) = {JeKE | e ∈ LG(X)}. Because JPlusK#

E is infinitely distributive over ⊕
([EKL10, Defn. 2.1 and §2.3.3]),mGE(X) = nGE(X) holds by Thm. 3.13, and thus we
can computemGE(X) by solving a set of equations in which, for each X0 ∈ N, there
is an equation of the form

nGE(X0)= ⊕X0→g(X1,...,Xk)∈δJgK
#
E(nGE(X1), . . . ,nGE(Xk)). (3.26)

The argument given in the previous paragraph is captured by the following
lemma:

Lemma 3.23. Given an LIA+ grammar G = (N,Σ,S, δ), a finite set of examples E,
GE = (G, S) is an exact abstraction of the semantics of the languages LG(X), for all X ∈ N
(with respect to LIA and E).

Proof. We can show that for any expression e, the abstract semantics JeK#
E is always a

singleton set {JeKE}, where the element of the singleton set is exactly the semantics of
e. For an arbitrary tree e ∈ LG(X), in the computation of JeK#

E via Eqns. (3.22)–(3.25),
there is never any use of the ⊕ operation of SL. Consequently, the computation
of JeK#

E produces a semi-linear set that consists of a single vector—the same vec-
tor, in fact, that is produced by the computation of JeKE via Eqns. (3.15)–(3.18).
In particular, Eqn. (3.21) preserves singleton sets, and hence for singleton sets,
Eqn. (3.21) emulates Eqn. (3.15). Therefore, the combine-over-all-derivations value
mGE(X) =

⊕
e∈LG(X)JeK

#
E is exactly the set of vectors {JeKE | e ∈ LG(X)}. In other

words, mGE(X) is an exact abstraction of the J·KE semantics of the terms in LG(X),
i.e., γ(mGE(X)) = {JeKE | e ∈ LG(X)}.

Therefore, GE is an exact abstraction of the semantics of LG(X).

Example 3.24. Consider again the LIA+ grammar G1 from Eqn. (3.3), written out in the
expanded form given in footnote 5:

Start ::= Plus(S1, Start) | Num(0) S1 ::= Plus(S2, Var(x))
S2 ::= Plus(S3, Var(x)) S3 ::= Var(x).
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Let E be {1, 2}, and thus µE(x) = 〈1, 2〉. The equation system for the GFA problem G1E is
as follows:

nG1E(Start) = nG1E(S1)⊗ nG1E(Start)⊕ {〈(0, 0), ∅〉}
nG1E(S1) = nG1E(S2)⊗ {〈(1, 2), ∅〉}
nG1E(S2) = nG1E(S3)⊗ {〈(1, 2), ∅〉} nG1E(S3) = {〈(1, 2), ∅〉}

which has the solution

nG1E(Start) = {〈(0, 0), {(3, 6)}〉} nG1E(S2) = {〈(2, 4), ∅〉}
nG1E(S1) = {〈(3, 6), ∅〉} nG1E(S3) = {〈(1, 2), ∅〉}.

The concretizations of semi-linear sets in the solution are

γ(nG1E(Start)) = {(0, 0) + λ(3, 6) | λ ∈ N}}
γ(nG1E(S1)) = {(3, 6)} γ(nG1E(S2)) = {(2, 4)}
γ(nG1E(S3)) = {(1, 2)}.

The following proposition shows that the equations generated in Eqn. (3.26)
can be solved using Newton’s method.

Proposition 3.25. (SL,⊕,⊗, 0, 1) is a commutative, idempotent,ω-continuous semiring.

Moreover, (SL,⊕,⊗, 0, 1) has infinite ascending chains; consequently, Lem. 3.19
is directly relevant to our setting. Henceforth, we use the term “semiring”—and
symbol S—to mean a commutative, idempotent,ω-continuous semiring.

Before concluding this section, we analyze the size of the semi-linear set com-
puted by the NPA method when solving equations generated by LIA+ grammars.
For a semi-linear set sl = {〈~ui,Vi〉i}, let its size be

∑
i(|Vi|+ 1).

Given an LIA grammar, a finite set of examples E and a nonterminal X ∈ N, the
semi-linear set nGE(X) yielded by NPA can contain exponentially many linear sets
[KT10].
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Checking Unrealizability

We now show how symbolic concretization for SL can be used to prove that no
element ~o in nG(Start) satisfies the specification ψE(~o) of the SyGuS problem. The
logic LIA supports symbolic concretization for SL. For instance, for a linear set
{〈~u, {~v1, . . . ,~vn}〉}, its symbolic concretization γ̂(〈~u, {~v1, . . . ,~vn}〉,~o) is defined as fol-
lows:

∃λ1 ∈ N, . . . , λn ∈ N.(~o = ~u+ λ1~v1 + · · ·+ λn~vn).

Thus, the symbolic concretization for a semi-linear set is:

γ̂({〈~ui,Vi〉}i,~o)
def
=
∨
i

γ̂(〈~ui,Vi〉,~o). (3.27)

Note that ~o is shared among all disjuncts. The set of satisfying assignments to ~o

consist of exactly the vectors in γ({〈~ui,Vi〉}i).
Our decidability result follows directly from Thm. 3.15.

Theorem 3.26. Given an LIA SyGuS problem sy and a finite set of examples E, it is
decidable whether the SyGuS problem syE is realizable.

Proof. We have shown that nGE(x) is an exact abstraction for LIA grammars
(Lemma 3.23) and LIA supports symbolic concretization (Eqn. (3.27)). According
to Thm. 3.15, GE = (G, S) is sound and complete for proving unrealizability of LIA
SyGuS problems for finitely example, and hence decidable.

3.6 Proving Unrealizability of CLIA SyGuS
Problems with Examples

In this section, we instantiate the framework from §3.4 to obtain a decision procedure
for realizability of SyGuS problems in conditional linear integer arithmetic (CLIA),
where the specification is given by examples. The decision procedure follows
the same steps as the one for LIA in §3.5. The main difference is a technique for
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solving equations generated from grammars that involve both Boolean and integer
operations.

Conditional Linear Integer Arithmetic

The grammar of all CLIA terms is the following:

TZ ::= IfThenElse(TB, TZ, TZ) | Plus(TZ, TZ)
| Minus(TZ, TZ) | Num(c) | Var(x)

TB ::= And(TB, TB) | Not(TB) | LessThan(TZ, TZ)

where c ∈ Z is a constant and x ∈ V is a input variable to the function being
synthesized. Notice that the definitions of TZ and TB are mutually recursive. 12 The
example grammar presented in Eqn. (3.7) in §3.4 is a CLIA grammar.

We now define the semantics of CLIA terms. Given an integer vector~v ∈ Zd and
a Boolean vector ~b ∈ Bd, let proj~Z(~v,b) be the integer vector obtained by keeping the
vector elements of ~v corresponding to the indices for which ~b is true, and zeroing
out all other elements:

proj~Z(〈u1, . . . ,ud〉, 〈b1, . . . ,bd〉)

= 〈if(b1) then u1 else 0, . . . , if(bd) then ud else 0〉

The semantics of symbols that are not in LIA is as follows:

JIfThenElseKE(~b, ~v1, ~v2) = proj~Z(~v1,~b) + proj~Z(~v2,¬~b)
JNotKE(~b) = ¬~b JAndKE( ~b1, ~b2) = ~b1 ∧ ~b2

JLessThanKE(~v1, ~v2) = ~v1 < ~v2

where the operations +, ∧, <, and ¬ are performed element-wise—e.g., ~u < ~v =

〈b1, . . . ,bn〉 such that bi ⇔ ui < vi.
12For any SyGuS problem over CLIA terms, the goal will be to synthesize a term with a specific

type—i.e., either B or Z.
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Similarly to what we did in §3.5, any CLIA grammar G can be rewritten into an
equivalent CLIA+ grammar h(G) that does not contain any occurrences of Minus,
but may contain the symbol NegVar.

The rest of the section is organized as follows. First, we present the abstract
domains used to represent Boolean and integer terms (§3.6). Second, we show
how to compute an exact abstraction of Boolean nonterminals in grammars without
IfThenElse (§3.6). Third, we show how to solve SyGuS problems with CLIA gram-
mars containing arbitrary operators, in particular IfThenElse and mutual recursion
(§3.6).

Abstract Semantics for CLIA

We use sets of Boolean vectors as the abstract domain for Boolean nonterminals,
and semi-linear sets as the abstract domain for integer nonterminals. We use b to
denote a Boolean vector and bset to denote sets of Boolean vectors.

Given a semi-linear set sl∈SL and a Boolean vector ~b∈Bd, let projSL(sl,~b) be
the semi-linear set obtained by zeroing out for each vector in sl the elements at all
index positions for which ~b is false:

projSL({〈~ui,Ωi〉}i,~b) = {projS(〈~ui,Ωi〉,~b)}i
projS(〈~u, {~v1, ...,~vn}〉,~b) = 〈proj~Z(~u,~b), {proj~Z(~vi,~b)}i〉

Next, we lift the concrete semantics to semi-linear sets and define the abstract
semantics of CLIA operators that are not in LIA.

JIfThenElseK#
E(bset, sl1, sl2) =⊕

~b∈bset projSL(sl1,~b)⊗ projSL(sl2,¬~b)

JLessThanK#
E(sl1, sl2) = {v1<v2 | v1 ∈ sl1, v2 ∈ sl2}

JNotK#
E(bset) =

⋃
~b∈bset{¬

~b}

JAndK#
E(bset1, bset2) =

⋃
~b1∈bset1, ~b2∈bset2

{ ~b1 ∧ ~b2}

Example 3.27. Consider a set of Boolean vectors bset := {(t, f), (t, t)}
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and two semi-linear sets sl1 := {〈(1, 2), {(3, 4)}〉} and sl2 :=

{〈(5, 6), {(7, 8)}〉}. Then (i) JNotK#
E(bset) = {(f, t), (f, f)}, and

(ii) JLessThanK#
E(sl1, sl2) = {(t, t), (t, f), (f, f)} since (1, 2) < (5, 6) = (t, t),

(1, 2) + (3, 4) < (5, 6) = (t, f) and (1, 2) + 2(3, 4) < (5, 6) = (f, f). Finally,

JIfThenElseK#
E(bset, sl1, sl2)

= {〈(1, 0), {(3, 0)}〉}⊗ {〈(0, 6), {(0, 8)}〉}

⊕{〈(1, 2), {(3, 4)}〉}⊗ {〈(0, 0), {(0, 0)}〉}

= {〈(1, 6), {(3, 0), (0, 8)}〉, 〈(1, 2), {(3, 4), (0, 0)}〉}

Operationally, the semantics of the LessThan symbol can be implemented using
an SMT solver. As shown in §3.5, a semi-linear set sl can be symbolically con-
cretized as a formula γ̂(sl,~o) in LIA (a decidable SMT theory). Therefore, the set
JLessThanK#

E(sl1, sl2) = bset can be computed by performing 2|E| SMT queries—i.e.,
for every Boolean vector ~b = 〈b1, . . . ,b|E|〉, we have that ~b ∈ bset iff the following
formula is satisfiable: γ̂(sl1,~o1)∧ γ̂(sl2,~o2)∧ ~b = ~o1 < ~o2.

Similarly to how we defined J·K#
E for multisorted terms, we overload ⊕ as the

union of sets of Boolean vectors, and define a multisorted semilattice DCLIA+ :=

(2B ] SL,⊕) over sets of Boolean vectors and semi-linear sets. We use GCLIA+
E :=

(G,DCLIA+) to denote the GFA problem for a CLIA+ grammar G and finitely many
examples E. GCLIA+

E is an exact abstraction of the semantics of CLIA+ grammars.

Lemma 3.28. Given CLIA+ grammar G = (N,Σ,S, δ), finite set of examples E, GCLIA+
E

is an exact abstraction of the semantics of the languages LG(X), for all X ∈ N (with respect
to LIA and E).

Proof. Using a similar argument as in §3.5, we can show that for any expression e,
the abstract semantics JeK#

E is always a singleton set {JeKE}, where the element of
the singleton set is exactly the semantics of e. Therefore,mGCLIA+

E
=
⊕
e∈LG(X)JeK

#
E

is exactly {JeKE | e ∈ LG(X)}.
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CLIA Equations without Mutual Recursion

A CLIA grammar G contains Boolean and integer nonterminals. A nonterminal X
is a Boolean nonterminal if JXK ∈ B, and is an integer nonterminal if JXK ∈ Z. In
this subsection, we assume that there exists no mutual recursion, i.e., G contains
no IfThenElse productions. Under this assumption, the only operator that connects
Boolean nonterminals and integer nonterminals is LessThan, and hence no Boolean
nonterminal appears in the productions of an integer nonterminal. Therefore, we
can proceed by first solving the equations that involve integer nonterminals, using
the technique presented in §3.5, and then plugging the corresponding values into
the equations that involve Boolean nonterminals.

Example 3.29. Consider the following grammar Gb:

BExp ::= LessThan(X,N2) | LessThan(N0,Exp)
| And(BExp,BExp)

Exp ::= Plus(X,Exp) | Num(0) X ::= Var(x)
N0 ::= Num(0) N2 ::= Num(2)

(3.28)

Assume that the given set of examples is E = {1, 2}. If we consider the equations generated
by grammar flow analysis for this grammar, all the variables corresponding to the integer
nonterminals Exp,X,N0,N2 do not depend on any of the variables for the Boolean non-
terminals. Therefore, we can solve the corresponding set of equations using the techniques
presented in §3.5. For each such nonterminal X, by plugging the value of each nGCLIA+

E
(X)

in the equations corresponding to BExpr we get the following equation:

nGCLIA+
E

(BExp) = {(t, f)}⊕ {(t, t), (f, f)}
⊕JAndK#(nGCLIA+

E
(BExp),nGCLIA+

E
(BExp))

(3.29)

where ⊕ is the set union operator.

After this step, we are left with a set of equations eqsB that involve only Boolean
nonterminals and Boolean symbols. Concretely, for every nonterminal X in the set
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of Boolean nonterminals NB, eqsB contains an equation

nGCLIA+
E

(X) =
⊕

X→g(X1,...,Xk)∈δ

JgK#
E(nGCLIA+

E
(X1), ...,nGCLIA+

E
(Xk)) (3.30)

Because the domain of sets of Boolean vectors is finite, the least fixed point of eqsB
can be found using an algorithm SolveBool that iteratively computes finer under-
approximations of nGCLIA+

E
as nk

GCLIA+
E

—i.e., the under-approximation at iteration k—
until it reaches the least fixed point, which—by Thm. 3.13—is an exact abstraction.
The initial under-approximation is n(0)

GCLIA+
E

(X) = ∅ for all Boolean nonterminals
in X. The under-approximation of each terminal X at iteration k is the following
expression:

n
(i)

GCLIA+
E

(X)

= n
(i−1)
GCLIA+
E

(X)⊕⊕
X→g(X1,...,Xn)∈δ

JgK#
E(n

(i−1)
GCLIA+
E

(X1), ...,n(i−1)
GCLIA+
E

(Xn)) | X ∈ NB).

Notice that JgK#
E is computable for every operator g (§3.6). This algorithm termi-

nates in at most 2|E||NB| iterations because the set of Boolean vectors has size at
most 2|E|, and each iteration adds at least one Boolean vector to one of the variables
until the least fixed point is reached.

Example 3.30. Recall Eqn. (3.29) from Ex. 3.29. In the first iteration of the iterative
algorithm n

(0)
GCLIA+
E

(X) = ∅. We compute n(1)
GCLIA+
E

(BExp) as follows:

n
(1)
GCLIA+
E

(BExp) = {(t, f)}⊕ {(t, t), (f, f)}

⊕ JAndK#(n
(0)
GCLIA+
E

(BExp),n(0)
GCLIA+
E

(BExp))

and obtain n(1)
GCLIA+
E

(BExp) = {(t, f), (t, t), (f, f)}. If we compute n(2)
GCLIA+
E

(BExp) using

the same technique, we reach a fixed point—i.e., n(2)
GCLIA+
E

(BExp) = n
(1)
GCLIA+
E

(BExp).
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Lemma 3.31. Given a set of equations involving only Boolean-nonterminal variables and
representing the abstract semantics of k examples, the iterative algorithm SolveBool com-
putes a fixed-point solution in at most n2k iterations, where n is the number of nonterminal
variables.

Proof. Note that n(i−1)
GCLIA+
E

(X) ⊆ n
(i)

GCLIA+
E

(X) for all i and X, and the size of a set of
Boolean vector with dimension k is at most 2k. Then the size of underapproxima-
tions is strictly increasing (otherwise the least fixed point is reached) and bounded
by n2k, i.e.,

∑
X∈N |n

(i−1)
GCLIA+
E

(X)| <
∑
X∈N |n

(i)

GCLIA+
E

(X)| 6 n2k, for all i. Therefore, the
iteration number i can be at most n2k.

CLIA Equations with Mutual Recursion

We have seen how to compute exact abstractions for grammars without mutual
recursion, for both integer (§3.5) and Boolean (§3.6) nonterminals. In this section,
we show how to handle grammars that involve IfThenElse symbols, which introduce
mutual recursion between Boolean and integer nonterminals. See Eqn. (3.9) in
§3.4 for an example of equations that involve mutual recursion. To solve mutually
recursive equations, we cannot simply compute the abstraction for one type and
use the corresponding values to compute the abstraction for the other type, like we
did in §3.6. However, we show that if we repeat such substitutions in an iterative
fashion, we obtain an algorithm SolveMutual that computes an exact abstraction
for a grammar with mutual recursion.

At the k-th iteration, for every nonterminal X, the algorithm computes an under-
approximation nk

GCLIA+
E

(X) of nGCLIA+
E

(X). Initially, n-1
GCLIA+
E

(X) = 0 for all nonterminals
X of type Z. At iteration k > 0 the algorithm does the following:

Step 1 Replace each integer nonterminalZwith the valuenk-1
GCLIA+
E

(Z) from iteration
k-1 and use the technique in §3.6 to compute nk

GCLIA+
E

(B) for each Boolean nontermi-
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nal B. Formally, for each Boolean nonterminal B ∈ NB we have the equation:

nk
GCLIA+
E

(B) =
⊕

B→g(X1,...,Xn)∈δ

JgK#
E(n

(i1)

GCLIA+
E

(X1), ...,n(in)

GCLIA+
E

(Xn)) (3.31)

where each ij is equal to k if Xj ∈ NB and k− 1 if Xj ∈ NZ.

Step 2 Replace each Boolean nonterminal Bwith the value nk
GCLIA+
E

(B) from Step 1
and compute nk

GCLIA+
E

(Z) for each integer nonterminal Z (see Eqn. (3.10) in §3.4 for
an example).

Formally, for each integer nonterminal Z ∈ NZ we have the equation:

nk
GCLIA+
E

(Z) =
⊕

Z→g(X1,...,Xn)∈δ

JgK#
E(n

k
GCLIA+
E

(X1), ...,nk
GCLIA+
E

(Xn)) (3.32)

where for each Xj ∈ NB, nk
GCLIA+
E

(Xj) is the value computed in Step 1. The equa-
tions obtained at Step 2 only contain integer nonterminals, but they may contain
IfThenElse symbols for which the abstract semantics contains the projSL operator
that is not directly supported by the equation-solving technique presented in §3.5.
In the rest of this section, we present a way to transform the given set of equa-
tions into a new set of equations that faithfully describes the abstract semantics
of IfThenElse symbols, using only ⊗ and ⊕ operations over semi-linear sets. The
resulting equations can be solved using the technique presented in §3.5.

The iterative algorithm SolveMutual is guaranteed to terminate in |N|2|E| itera-
tions.

Lemma 3.32. Given a set of equations involving both Boolean- and integer-nonterminal
variables that represent the abstract semantics of k examples, the iterative algorithm Solve-
Mutual computes a fixed-point solution in at most n2k iterations, where n is the number
of nonterminal variables.

Proof. In each iteration, at least one of the set nk
GCLIA+
E

(B) of Boolean vectors should
be different from the set nk-1

GCLIA+
E

(B) in the previous iteration. Each set of Boolean
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vectors can be only updated at most 2|E| times. Therefore there can be at most |N|2|E|

iterations.

JIfThenElseK#
E using Semi-Linear-Set Operations

In this section, we show how to solve equations that involve IfThenElse symbols.
Recall the definition of the abstract semantics of IfThenElse symbols:

JIfThenElseK#
E(bset, sl1, sl2) =

⊕
b∈bset

projSL(sl1,b)⊗ projSL(sl2,¬b)

In the rest of this section, we show how equations that involve the semantics
of IfThenElse symbols can be rewritten into equations that involve only ⊕ and ⊗
operations, so that they can be solved using Newton’s method. For every possible
Boolean vector b, the new set of equations contains a new variable nk

GCLIA+
E

(Xb), so
that the solution to the set of equations for this variable is projSL(nk

GCLIA+
E

(X),b).
Let eqs be a set of equations over a set of integer nonterminals N. We write

x/y to denote the substitution of every occurrence of x with y. We generate a
set of equations RemIf(eqs) = eqs ′ over the set of variables NBd as follows. For
every equation nk

GCLIA+
E

(X) =
⊕
i αi in eqs and b ∈ Bd, there exists an equation

nk
GCLIA+
E

(Xb) =
⊕
i πb(αi) in eqs ′, where πb applies the following substitution in this

order:

1. For every X ∈ N and b ′ ∈ Bd, πb applies the substitution

projSL(nk
GCLIA+
E

(X),b ′)/nk
GCLIA+
E

(Xb∧b
′
).

2. For every X ∈ N, πb applies nk
GCLIA+
E

(X)/nk
GCLIA+
E

(Xb).

3. For any semi-linear set sl appearing in eqs, πb applies the substitution
sl/projSL(sl,b). Because sl is a constant, this substitution yields a constant
semi-linear set.
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Example 3.33. Figure 3.3 illustrates how Eqn. (3.10) is rewritten into Eqn. (3.11). We
omit equations for variablesn1

2,E(Start{f,f}) andn1
2,E(Start{t,f}) because they do not contribute

to the solving of n1
2,E(Start{t,t}). After expanding the definition of JIfThenElseK#, we apply

the substitutions to obtain Eqn. (3.11). Substitution 2 is not applied because there are no
variables of the form n1

2,E(X) after applying substitution 1.

n1
2,E(Start) = JIfThenElseK#

E({(t, f)}, {(0, 0) + λ(3, 6)},
n1

2,E(Start))⊕ {(0, 0) + λ(2, 4)}⊕ {(0, 0) + λ(3, 6)}
⇓ Generate equations for Startb

n1
2,E(Start(t,t)) = π{t,t}

(
JIfThenElseK#

E({(t, f)}, {(0, 0) + λ(3, 6)},
n1

2,E(Start))
)
⊕ π{t,t}

(
{(0, 0) + λ(2, 4)}

)
⊕ π{t,t}

(
{(0, 0) + λ(3, 6)}

)
n1

2,E(Start(f,t)) = π{f,t}
(
JIfThenElseK#

E({(t, f)}, {(0, 0) + λ(3, 6)},
n1

2,E(Start))
)
⊕ π{f,t}

(
{(0, 0) + λ(2, 4)}

)
⊕ π{f,t}

(
{(0, 0) + λ(3, 6)}

)
⇓ Expand definition of JIfThenElseK#

n1
2,E(Start(t,t)) = π{t,t}

(
projSL({(0, 0) + λ(3, 6)}, {f, t})

)
⊗ π{t,t}

(
projSL(n1

2,E(Start), (f, t))
)

⊕ π{t,t}
(
{(0, 0) + λ(2, 4)}

)
⊕ π{t,t}

(
{(0, 0) + λ(3, 6)}

)
n1

2,E(Start(f,t)) = π{f,t}
(
projSL({(0, 0) + λ(3, 6)}, {f, t})

)
⊗ π{f,t}

(
projSL(n1

2,E(Start), (f, t))
)

⊕ π{f,t}
(
{(0, 0) + λ(2, 4)}

)
⊕ π{f,t}

(
{(0, 0) + λ(3, 6)}

)www� Apply projSL to constants
Apply substitution 1

n1
2,E(Start(t,t)) = π{t,t}

(
{(0, 0) + λ(3, 0)}

)
⊗ n1

2,E(Start(t,t)∧(f,t))

⊕ π{t,t}
(
{(0, 0) + λ(2, 4)}

)
⊕ π{t,t}

(
{(0, 0) + λ(3, 6)}

)
n1

2,E(Start(f,t)) = π{f,t}
(
{(0, 0) + λ(3, 0)}

)
⊗ n1

2,E(Start(f,t)∧(f,t))

⊕ π{f,t}
(
{(0, 0) + λ(2, 4)}

)
⊕ π{f,t}

(
{(0, 0) + λ(3, 6)}

)
⇓ Apply substitution 3

n1
2,E(Start(t,t)) = {(0, 0) + λ(3, 0)}⊗ n1

2,E(Start(f,t))⊕ {(0, 0) + λ(2, 4)}⊕ {(0, 0) + λ(3, 6)}
n1

2,E(Start(f,t)) = {(0, 0) + λ(0, 0)}⊗ n1
2,E(Start(f,t))⊕ {(0, 0) + λ(0, 4)}⊕ {(0, 0) + λ(0, 6)}

Figure 3.3: Rewriting Eqn. (3.10) into Eqn. (3.11).
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Lemma 3.34. Given a set of equations eqs involving only variables V := {nGCLIA+
E

(X)}X∈N,
the set of equations RemIf(eqs) has at most |V |2|E| variables, and an assignment σ ′ is
a solution of RemIf(eqs) iff there exists a solution σ of eqs such that σ(nGCLIA+

E
(X)) =

σ ′(nGCLIA+
E

(X~t)) for all X ∈ N.

Proof. The variables in RemIf(eqs) are of form nGCLIA+
E

(Xb) for X ∈ V and b ∈ 2|E|.
Therefore there are at most |N|2|E| variables in RemIf(eqs).

To show that every solution to eqs is also a solution to V~t := {nGCLIA+
E

(X~t)} in eqs ′,
it is sufficient to prove that for all b ∈ Bd, if an assignment σ : V → SL is a solution
to eqs, then the assignment σ ′(nGCLIA+

E
(Xb)) := projSL(σ(nGCLIA+

E
(X)),b) is a solution

to eqs ′.
Actually, equations in eqs are of the form X =

⊕
i αi (Eqn. (3.32)). Therefore, all

we need to show is that projSL(αi[σ],b) = πb(αi)[σ ′] for all αi and b ∈ Bd, where
[σ] := [for each x ∈ V .x/σ(x)]. Note that αmust be one of the following form:

• if α = projSL(nGCLIA+
E

(X1),b1)⊗ projSL(nGCLIA+
E

(X2),b2), we have

projSL(α[σ],b) = projSL(σ(nGCLIA+
E

(X1)),b1 ∧ b)⊗ projSL(σ(nGCLIA+
E

(X2)),b2 ∧ b)

= σ ′(nGCLIA+
E

(Xb1∧b
1 ))⊗ σ ′(nGCLIA+

E
(Xb2∧b

2 ))

= πb(αi)[σ
′]

• if α = nGCLIA+
E

(X1)⊗ nGCLIA+
E

(X2), we have

πb(αi)[σ
′] =

(
nGCLIA+

E
(Xb1 )⊗ nGCLIA+

E
(Xb2 )

)
[σ ′]

= projSL(σ(nGCLIA+
E

(X1)),b)⊗ projSL(σ(nGCLIA+
E

(X2)),b)

= projSL(α[σ],b),

since projSL is distributive over ⊗.

• if α = sl, it is obvious that projSL(α[σ],b)=πb(αi)[σ ′].
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• if α = nGCLIA+
E

(X1), we have

projSL(α[σ],b) = projSL(σ(nGCLIA+
E

(X1)),b)

= σ ′(nGCLIA+
E

(Xb1 )) = πb(αi)[σ
′].

Therefore any solution to eqs is a solution to V~t in eqs ′.
For the other direction, we need to show that assume σ ′ is a solution to eqs ′,

σ(·) := σ ′(·, ~tr) is a solution to eqs. The argument for this case is similar to the
previous one.

Checking Unrealizability

Using the symbolic-concretization technique described in §3.5 , and the complexities
described throughout this section, we obtain the following decidability theorem.

Theorem 3.35. Given a CLIA SyGuS problem sy and a finite set of examples E, it is
decidable whether the SyGuS problem syE is (un)realizable.

Proof. We have shown that nGCLIA+
E E

is an exact abstraction for CLIA grammars
(Lemma 3.28) and the domain of semi-linear sets supports symbolic concretization.
Besides, we have shown a sound and complete algorithm SolveMutual to solve
nGCLIA+

E E
. According to the Thm. 3.15, GFA is sound and complete for proving

unrealizability of CLIA SyGuS problems for finitely example, and hence decidable.

3.7 Implementation

Tool Nope

We implemented the technique of unrealizability (§3.3) as verification into a tool
Nope. Nope is a tool that can return two-sided answers to unrealizability problems
of the form sy = (ψ,G). When it returns unrealizable, no expression-tree in L(G)
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satisfies ψ; when it returns realizable, some e ∈ L(G) satisfies ψ; Nope can also
time out. Nope incorporates several existing pieces of software.

1. The (un)reachability verifier SeaHorn is applied to the reachability problems
of the form reenc(sy,E) created during successive CEGIS rounds.

2. The SMT solver Z3 is used to check whether a generated expression-tree e
satisfies ψ. If it does, Nope returns realizable (along with e); if it does not,
Nope creates a new input example to add to E.

It is important to observe that SeaHorn, like most reachability verifiers, is only
sound for unsatisfiability—i.e., if SeaHorn returns unsatisfiable, the reachability
problem is indeed unsatisfiable. Fortunately, SeaHorn’s one-sided answers are
in the correct direction for our application: to prove unrealizability, Nope only
requires the reachability verifier to be sound for unsatisfiability.

There is one aspect of Nope that differs from the technique that has been pre-
sented earlier in the chapter. While SeaHorn is sound for unreachability, it is not
sound for reachability—i.e., it cannot soundly prove whether a synthesis problem
is realizable. To address this problem, to check whether a given SyGuS problem
syE is realizable on the finite set of examples E, Nope also calls the SyGuS solver
ESolver [AFSSL16b] to synthesize an expression-tree e that satisfies syE.13

In practice, for every intermediate problem syE generated by the CEGIS algo-
rithm, Nope runs the ESolver on syE and SeaHorn on reenc(sy,E) in parallel. If ESolver
returns a solution e, SeaHorn is interrupted, and Z3 is used to check whether e
satisfies ψ. Depending on the outcome, Nope either returns realizable or obtains
an additional input example to add to E. If SeaHorn returns unsatisfiable, Nope
returns unrealizable.

Modulo bugs in its constituent components, Nope is sound for both realizability
and unrealizability, but because of Lemma 3.5 and the incompleteness of SeaHorn,
Nope is not complete for unrealizability.

13We chose ESolver because on the benchmarks we considered, ESolver outperformed other
SyGuS solvers (e.g., CVC4 [BCD+11]).
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Tool Nay

We implemented the technique of unrealizability as grammar flow analysis (§3.4–
§3.6) into a tool Nay that can return two-sided answers to unrealizability problems
of the form sy = (ψ,G). When it returns unrealizable, no term in L(G) satisfies ψ;
when it returns realizable, some e ∈ L(G) satisfies ψ; Nay can also time out. Nay
consists of three components: 1) a verifier (the SMT solver CVC4 [BCD+11]), which
verifies the correctness of candidate solutions and produces counterexamples, 2) a
synthesizer (ESolver—the enumerative solver introduced in [AFSSL16b]), which
synthesizes solutions from examples, and 3) an unrealizability verifier, which
proves whether the problem is unrealizable on the current set of examples.

Algorithm 1 shows Nay’s CEGIS loop. Given a SyGuS problem sy = (ψ,G),
Nay first initialize E with a random input example with values in the range
[−50, 50](line (3.7)), and then, in parallel, 1 calls ESolver to find a solution of syE

(line (3.7)), and 2 uses grammar flow analysis (Algorithm 2) to decide whether
syE∪Er is unrealizable (line (3.7)), where Er is a set of randomly generated tempo-
rary examples. Randomly generated examples are used when the problem is proven
to be realizable by GFA, but we do not have a candidate solution e∗—ESolver did not
return yet—that can be used to issue an SMT query to possibly obtain a counterex-
ample. During each CEGIS iteration, the following three events can happen: 1) If
GFA returns unrealizable, Nay terminates and outputs unrealizable (line (3.7)). 2)
If GFA returns realizable, Nay adds a temporary random example to Er (line (3.7)),
and reruns GFA with E ∪ Er. 3) If ESolver returns a candidate solution e∗, the
problem syE is realizable. (ESolver never uses the temporary random examples.)
Therefore, Nay kills the GFA process and then issues an SMT query to check if e∗ is
a solution to the SyGuS problem sy (line (3.7)): if not, Nay adds a counterexample
to E (line (3.7)) and triggers the next CEGIS iteration, otherwise, Nay return e∗ as
a solution to the given SyGuS problem sy (line (3.7)).

Nay currently has two modes: Nay-Horn and Nay-SL.
Nay-Horn implements the constrained-Horn-clauses technique for solving equa-

tions presented in §3.4, and uses Z3’s Horn-clause solver, Spacer [DMB08], to solve
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the Horn clauses.
Nay-SL implements the decision procedures presented in §3.5 and §3.6 for

solving LIA and CLIA problems. Nay-SL also implements two optimizations: (i)
Nay-SL eagerly removes a linear set from a semi-linear set whenever it is trivially
subsumed by another linear set; and (ii) Nay-SL uses the optimization presented in
the following paragraph.

Algorithm 1 CEGIS with random examples
Function :Nay(G,ψ)
Input: Grammar G, specification ψ
i← Random(−50, 50) Set of examples E← {i} while True do

do in parallel
1 {e∗ ←ESolver(G,ψ,E)

kill 2
if ∃icex.¬ψ(Je∗K, icex) then

E← E ∪ {icex}

continue
end

else
return e∗ }

end
2 { Er ← ∅

while True do
result←CheckUnrealizable(G,ψ,E ∪ Er)

if result =Unrealizable then
kill 1

return Unrealizable
end
i← Random(−50, 50)
Er ← Er ∪ {i}

continue }
end

end
end

Solving GFA Equations via Stratification. The nG equations (Eqn. (3.13)) that
arise in a GFA problem are amenable to the standard optimization technique of
identifying “strata” of dependences among nonterminals, and solving the equations
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by finding values for nonterminals of lower “strata” first, working up to higher
strata in an order that respects dependences among the equations.

This idea can be formalized in terms of the strongly connected components
(SCCs) of a dependence graph, defined as follows: the nodes are the nonterminals
ofG; the edges represent the dependence of a left-hand-side nonterminal on a right-
hand-side nonterminal. For instance, if G has the productions X0 → g(X1,X2) |

h(X2,X3), then the dependence graph has three edges into node X0: X1 → X0,
X2 → X0, and X3 → X0. There are three steps to finding an order in which to solve
the equations:

• Find the SCCs of the dependence graph.

• Collapse each SCC into a single node, to form a directed acyclic graph (DAG).

• Find a topological order of the DAG.

The set of nonterminals associated with a given node of the DAG corresponds to
one of the strata referred to earlier. The equation solver can work through the strata
in any topological order of the DAG.

3.8 Evaluation

In this section, we evaluate the effeteness and perforamnce of Nope and Nay on
unrealizable SyGuS problems.
Benchmarks. We perform our evaluation on 132 variants of the 60 LIA benchmarks
from the LIA SyGuS competition track [AFSSL16b]. We do not consider the other
SyGuS benchmark track, Bit-Vectors, because the SeaHorn verifier is unsound for
most bit-vector operations–e.g., bit-shifting. We used three suites of benchmarks.
LimitedIf (resp. LimitedPlus) contains 57 (resp. 30) benchmarks in which the
grammar bounds the number of times an IfThenElse (resp. Plus) operator can
appear in an expression-tree to be 1 less than the number required to solve the
original synthesis problem. We used the tool Quasi to automatically generate the
restricted grammars. LimitedConst contains 45 benchmarks in which the grammar
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allows the program to contain only constants that are coprime to any constants
that may appear in a valid solution—e.g., the solution requires using odd numbers,
but the grammar only contains the constant 2. The numbers of benchmarks in the
three suites differ because for certain benchmarks it did not make sense to create
a limited variant—e.g., if the smallest program consistent with the specification
contains no IfThenElse operators, no variant is created for the LimitedIf benchmark.
In all our benchmarks, the grammars describing the search space contain infinitely
many terms.

Our experiments were performed on an Intel Core i7 4.00GHz CPU, with 32GB
of RAM, running Lubuntu 18.10 via VirtualBox. We used version 4.8 of Z3, com-
mit 97f2334 of SeaHorn, and commit d37c50e of ESolver. The timeout for each
individual SeaHorn/ESolver call is set at 10 minutes.

Effectiveness of Nope

The complete results of our evaluation are shown in Tables 3.2 and 3.3. For brevity,
in Table 3.2 we omit consecutive benchmarks on which Nope times out—e.g., the
“. . . ” between benchmarks max4 and max15 represents 10 benchmarks from max5
to max14 for which Nope times out.

The tables present the number of nonterminals and the number of produc-
tions in the grammar of each benchmark, the number of examples used to prove
unrealizability, the total time taken by Nope, and the time taken by SeaHorn for
the last (un)reachability problem. For benchmarks on which Nope times out, the
value given for “number of examples” is the number of examples generated by the
CEGIS loop when Nope times out.

Our experiments were designed to answer the questions posed below.

EQ 1. Can Nope prove unrealizability for variants of real SyGuS benchmarks,
and how long does it take to do so?

Finding: Nope can prove unrealizability for 59/132 benchmarks. For the 59 bench-
marks solved by Nope, the average time taken is 15.59. The time taken to perform
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the last iteration of the algorithm—i.e., the time taken by SeaHorn to return unsat-
isfiable—accounts for 87% of the total running time.

Nope can solve all of the LimitedIf benchmarks for which the grammar allows at
most one IfThenElse operator. Allowing more IfThenElse operators in the grammar
leads to larger programs and larger sets of examples, and consequently the resulting
reachability problems are harder to solve for SeaHorn.

For a similar reason, Nope can solve only one of the LimitedPlus benchmarks.
All other LimitedPlus benchmarks allow 5 or more Plus statements, resulting in
grammars that have at least 130 productions.

Nope can solve allLimitedConst benchmarks because these require few examples
and result in small encoded programs.
EQ 2. How many examples does Nope use to prove unrealizability and how
does the number of examples affect the performance of Nope?

Note that Z3 can produce different models for the same query, and thus different
runs of NOPE can produce different sequences of example. Hence, there is no
guarantee that NOPE finds a good sequence of examples that prove unrealizability.
One measure of success is whether Nope is generally able to find a small number
of examples, when it succeeds in proving unrealizability.

Finding: Nope used 1 to 9 examples to prove unrealizability for the benchmarks on
which it terminated. Problems requiring large numbers of examples could not be
solved because either ESolver or SeaHorn timeouts—e.g., on the problem max4,
Nope gets to the point where the CEGIS loop has generated 17 examples, at which
point ESolver exceeds the timeout threshold.

Finding: The number of examples required to prove unrealizability depends mainly on
the arity of the synthesized function and the complexity of the grammar. The number
of examples seems to grow quadratically with the number of bounded operators
allowed in the grammar. In particular, problems in which the grammar allows zero
IfThenElse operators require 2–4 examples, while problems in which the grammar
allows one IfThenElse operator require 7–9 examples.

Figure 3.4 plots the running time of Nope against the number of examples gener-
ated by the CEGIS algorithm. Finding: The solving time appears to grow exponentially
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with the number of examples required to prove unrealizability.

Effectiveness of Nay

EQ 3. How effective is Nay at proving unrealizability?

We compare Nay-SL and Nay-Horn against Nope. For each benchmark, we run
each tool 5 times on different random seeds, therefore generating different random
sets of examples, and report whether a tool successfully terminated on at least one
run. This process guarantees that all tools are evaluated on the same final example
set that causes a problem to be unrealizable. Table 3.1 shows the results for the
LimitedPlus and LimitedIf benchmarks that at least one of the three tools could
solve. Because both tools use a CEGIS loop to produce input examples, only the
last iteration of CEGIS is unrealizable. For Nay-SL and Nope, that iteration is the
one that dominates the runtime. On average, it accounts for 60.4% of the running
time for Nay-SL and 90.3% for Nope, but only 8.3% for Nay-Horn. (For Nay-Horn,
counterexample generation is the most costly step.)
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Table 3.1: Performance of Nay and Nope for LimitedIf and LimitedPlus bench-
marks.14 The table shows the number of nonterminals (|N|), productions (|δ|), and
variables (|V |) in the problem grammar; the number of examples required to prove
unrealizability (|E|); and the average running time of Nay-SL, Nay-Horn, and Nope.
7 denotes a timeout.

Problem Grammar
|E|

time (s)
|N| |δ| |V | Nay-SL Nay-Horn Nope

Li
mi
te
dP

lu
s

guard1 7 24 3 2 0.24 7 7
guard2 9 34 3 3 12.86 7 7
guard3 11 41 3 1 0.07 7 7
guard4* 11 72 3 3.5 147.50 7 7
plane1 2 5 2 1 0.07 0.55 0.69
plane2 17 60 2 1.6 0.90 7 7
plane3 29 122 2 1.5 15.73 7 7
ite1* 7 2 3 2 1.05 7 7
ite2* 9 34 3 4 294.88 7 7

sum_2_5 11 40 2 4 15.48 7 7
search_2 5 16 3 3 1.21 7 7
search_3 7 25 4 4 2.65 7 7

Li
mi
te
dI
f

max2 1 5 2 4 0.13 1.13 1.48
max3 3 15 3 - 7 9.67 58.57

sum_2_5 1 5 2 3 0.17 0.61 0.69
sum_2_15 1 5 2 3 0.17 0.56 0.87
sum_3_5 3 15 3 - 7 17.85 101.44
sum_3_15 3 15 3 - 7 16.65 134.87
search_2 3 15 3 - 7 25.85 112.78
example1 3 10 2 3 0.14 0.73 1.12

guard1 1 6 2 4 0.13 0.44 0.43
guard2 1 6 2 4 0.22 0.33 0.49
guard3 1 6 2 4 0.16 0.27 0.46
guard4 1 6 2 4 0.11 0.72 0.58

ite1 3 15 3 - 7 2.68 369.57

Findings. Nay-SL solved 70/132 benchmarks, with an average running time of
1.97s.15 Nay-Horn and Nope solved identical sets of 59/132 benchmarks, with an
average running time of 0.63s and 15.59s, respectively. All tools can solve all the
LimitedConst benchmarks with similar performance. These benchmarks are easier
than the other ones.

Nay-SL can solve 11 LimitedPlus benchmarks that Nope cannot solve. These
15Most of the benchmarks for which Nay-SL times out are actually crashes caused by a memory

leak in CVC4. We have reported the bug.
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benchmarks involve large grammars, a known weakness of Nope. In particular,
NaySL can handle grammars with up to 29 nonterminals while Nope can only
handle grammars with up to 3 nonterminals. For 8 benchmarks, Nay-SL only
terminated for some of the random runs (certain random seeds triggered more
CEGIS iterations, making the final problem harder for Nay to solve).

Nope solved 5 LimitedIf benchmarks that Nay-SL cannot solve. Nope solves
these benchmarks using between 7 and 9 examples in the CEGIS loop. Because the
size of the semi-linear sets computed by Nay-SL depends heavily on the number of
examples, Nay-SL only solves benchmarks that require at most 4 examples. §3.8
analyzes the effect of the number of examples on Nay-SL’s performance. When
Nay-SL terminated, it took 1 to 15 iterations (avg. 6.6) to find a fixed point for
IfThenElse guards, and the final abstract domain of each guard contained 2 to 16
Boolean vectors (avg. 5.9). On average, the running time for computing semi-linear
sets is 70.6% of the total running time. On the benchmarks that all tools solved, all
tools terminated in less than 2s.

Nay-Horn and Nope solved exactly the same set of benchmarks. This outcome
is not surprising because Nope uses SeaHorn, a verification solver based on Horn
clauses that builds on Spacer, which is the constrained-Horn-clause solver used by
Nay-Horn. Nay-Horn directly encodes the equation-solving problem, while Nope
reduces the unrealizability problem to a verification problem that is then translated
into a potentially complex constrained-Horn-clause problem. For this reason, Nay-
Horn is on average 19 times faster than Nope. On benchmarks for which Nope
took more than 2 seconds, Nay-Horn is 82x faster than Nope (computed as the
geometric mean).

The reason we use random examples in Algorithm 1 is that there is a trade-off
between the size of solutions and the number of examples when we are proving the
realizability of SyGuS-with-examples problems. On the one hand, ESolver is not
affected by the number of examples, and can efficiently synthesize a solution when
a small solution exists. On the other hand the time required to prove realizability
by Nay-SL only depends on the size of grammars and the number of examples
but not on the size of solutions. For the realizable SyGuS-with-examples problems
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Figure 3.5: Time to compute semi-linear set vs. |N|.

produced during the CEGIS loop of our experiments, ESolver terminates on average
in 1.9 seconds when there exists a solution with size no more than 10, but terminates
on average in 54.5 seconds when there exists a solution with size greater than 10
(the largest solution has size 24). For the same problems, Nay-SL could not prove
realizability for problems with more than 5 examples, but it did prove realizability
for 7 problems on which ESolver failed. On the problems both ESolver and Nay-SL
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solved, ESolver is 87% faster than Nay-SL calculated as a geometric mean.
To answer EQ 1: if both Nay techniques are considered together, Nay solved 11

benchmarks that Nope did not solve, and was faster on the benchmarks that both tools solved.

The Cost of Proving Unrealizability

EQ 4. How does the size of the grammar and the number of examples affect the
performance of different solvers?

Finding. First, consider Nay-SL: when we fix the number of examples (different
marks in Fig. 3.5), the time taken to compute the semi-linear set grows roughly
exponentially. Also, the time grows roughly exponentially with respect to 2|E|.

Nay-Horn and Nope (shown in Fig. 3.6 and Fig. 3.7, respectively) can only
solve benchmarks involving up to 3 nonterminals. When we fix the number of
nonterminals, the running time of these two tools grows roughly exponentially
with respect to the number of examples.

To answer EQ 2: the running time of Nay-SL grows exponentially with respect
to |N|2|E|, and the running time of Nay-Horn and Nope grows exponentially with
respect to |E|.

Effectiveness of Grammar Stratification
EQ 5. Is the stratification optimization from §3.7 effective?

Finding. Using stratification, Nay-SL can compute the semi-linear sets for 9 bench-
marks for which Nay-SL times out without the optimization. On benchmarks that
take more than 1s to solve, the optimization results on average in a 3.1x speedup.
To answer EQ 3: the grammar-stratification optimization is highly effective.

3.9 Summary

In this chapter, we presented
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1. Nope, a general algorithm of proving unrealizability of SyGuS problems by
reducing the problems to verification problems;

2. Nay, a algorithm of proving unrealizability of SyGuS problems in CLIA theory,
which is based on the idea of grammar flow analysis and decidable.

The two algorithm of proving unrealizability allow us to strengthen the algo-
rithm of QuaSi that solves quantitative syntactic objectives in the sense that they
provide procedures to prove a solution is optimal instead of exhausting the search
space.
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Table 3.2: Performance of Nope on LimitedIf and LimitedPlus benchmarks. 7

denotes a timeout.
Problem number of number of number of total SeaHorn

nonterminals productions examples time (s) time (s)
Li
mi
te
dI
f

max2 1 5 4 1.48 0.53
max3 3 15 9 58.57 50.21
max4 5 34 17 7 7

. . . 7 7
max15 27 348 1 7 7

array_sum_2_5 1 5 3 0.69 0.17
array_sum_2_15 1 5 3 0.87 0.21
array_sum_3_5 3 15 7 101.44 87.92

array_sum_3_15 3 15 7 134.87 118.77
array_sum_4_5 5 34 14 7 7

array_sum_4_15 5 34 16 7 7
. . . 7 7

array_sum_10_5 19 149 1 7 7
array_sum_10_15 19 149 1 7 7

array_search_2 3 15 7 112.78 87.32
array_search_3 5 34 17 7 7

. . . 7 7
array_search_15 27 348 1 7 7
mpg_example1 1 7 3 1.12 0.38
mpg_example2 9 60 17 7 7
mpg_example3 5 34 12 7 7
mpg_example4 5 34 19 7 7
mpg_example5 9 60 11 7 7

mpg_guard1 1 6 2 0.43 0.18
mpg_guard2 1 6 2 0.49 0.19
mpg_guard3 1 6 2 0.46 0.17
mpg_guard4 1 6 2 0.58 0.18

mpg_ite1 3 15 8 369.57 361.21
mpg_ite2 5 29 11 7 7

Li
m
it
ed

Pl
us

array_sum_2_5 19 155 1 7 7
. . . 7 7

array_sum_10_5 461 51960 1 7 7
array_sum_2_15 59 702 1 7 7

. . . 7 7
array_sum_8_15 641 64816 1 7 7
mpg_example1 59 815 1 7 7
mpg_example2 21 178 1 7 7
mpg_example3 143 4186 1 7 7
mpg_example4 443 36745 1 7 7
mpg_example5 351 24872 1 7 7

mpg_guard1 7 130 1 7 7
mpg_guard2 9 237 1 7 7
mpg_guard3 11 382 1 7 7
mpg_guard4 13 580 1 7 7

mpg_ite1 9 237 1 7 7
mpg_ite2 13 580 1 7 7

mpg_plane1 2 5 3 0.69 0.13
mpg_plane2 17 139 1 7 7
mpg_plane3 29 309 1 7 7
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Table 3.3: Performance of Nope on LimitedConst benchmarks. 7 denotes a timeout.

Problem number of number of number of total SeaHorn
nonterminals productions examples time (s) time (s)

Li
mi
te
dC

on
st

array_search_2 2 9 2 0.78 0.32
array_search_3 2 10 3 1.26 0.43
array_search_4 2 11 3 1.25 0.22
array_search_5 2 12 3 1.01 0.50
array_search_6 2 13 3 0.87 0.41
array_search_7 2 14 3 0.85 0.26
array_search_8 2 15 3 0.97 0.36
array_search_9 2 16 3 0.70 0.48

array_search_10 2 17 3 0.80 0.37
array_search_11 2 18 3 1.09 0.32
array_search_12 2 19 3 1.13 0.25
array_search_13 2 20 3 0.73 0.29
array_search_14 2 21 3 0.77 0.42
array_search_15 2 22 3 1.06 0.23
array_sum_2_5 2 8 2 1.30 0.77

array_sum_2_15 2 8 2 1.46 0.83
array_sum_3_5 2 9 2 1.31 0.86

array_sum_3_15 2 9 2 1.28 0.75
array_sum_4_5 2 10 2 2.52 0.60

array_sum_4_15 2 10 2 1.35 0.56
array_sum_5_5 2 11 2 1.41 0.72

array_sum_5_15 2 11 2 1.43 0.44
array_sum_6_5 2 12 2 2.37 0.55

array_sum_6_15 2 12 2 1.56 0.70
array_sum_7_5 2 13 2 0.76 0.59

array_sum_7_15 2 13 2 1.87 0.78
array_sum_8_5 2 14 2 1.33 0.63

array_sum_8_15 2 14 2 1.53 0.67
array_sum_9_5 2 15 2 1.50 0.40

array_sum_9_15 2 15 2 1.44 0.79
array_sum_10_5 2 16 2 2.29 0.74
array_sum_10_15 2 16 2 0.87 0.43
mpg_example1 2 8 1 0.36 0.17
mpg_example2 2 9 4 0.50 0.30
mpg_example3 2 9 1 0.57 0.33
mpg_example4 2 10 1 0.44 0.16
mpg_example5 2 8 1 0.99 0.36

mpg_guard1 2 9 6 3.08 1.19
mpg_guard2 2 9 4 2.49 1.35
mpg_guard3 2 9 4 1.83 0.50
mpg_guard4 2 9 4 24.18 21.67

mpg_ite1 2 9 1 0.33 0.19
mpg_ite2 2 9 1 0.41 0.25

mpg_plane2 2 9 1 0.47 0.32
mpg_plane3 2 9 1 0.74 0.51
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Chapter 4

Synthesis with Asymptotic Resource
Bounds

4.1 Introduction

We have looked at quantitative syntactic objectives in the previous part. Now let us
move to another kind of quantitative objective in program synthesis: quantitative
semantic objectives—e.g., synthesizing a program that has a certain asymptotic
complexity.

Recently, Knoth et al. [KWPH19] studied the problem of resource-guided pro-
gram synthesis, where the goal is to synthesize programs with limited resource us-
age. Their approach, which combines refinement-type-directed synthesis [PKSL16]
and automatic amortized resource analysis (AARA) [HAH11], is restricted to con-
crete resource bounds, where the user must specify the exact resource usage of the
synthesized program as a linear expression. This limitation has two drawbacks: (i)
the user must have insights about the coefficients to put in the supplied bound—
which means that the user has to provide details about the complexity of code that
does not yet exist; (ii) the limitation to linear bounds means that the user cannot
specify resource bounds that involve logarithms, such as O(logn) and O(n logn),
common in problems based on divide and conquer.
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In this chapter, we introduce SynPlexity, a type-system paired with a type-
directed synthesis technique that addresses these issues. In SynPlexity, the user
provides as input a refinement type that describes both the functionality and the
asymptotic (big-O) resource usage of a program. For example, a user might ask
SynPlexity to synthesize an implementation of a sorting function with resource
usageO(n logn), wheren is the length of the input list. As in prior work, SynPlexity
also takes as input a set of auxiliary functions that the synthesized program can use.
SynPlexity then uses a type-directed synthesis algorithm to search for a program
that has the desired functionality, and satisfies the asymptotic resource bound.
SynPlexity’s synthesis algorithm uses a new type system that can reason about the
asymptotic complexity of functions. To achieve this goal, this type system uses two
ideas.

1. The type system uses recurrence relations instead of concrete resource poten-
tials [HAH11] to reason about the asymptotic complexity of functions. For
example, the recurrence relation T(u) 6 2T(bu

2c) +O(u) denotes that on an
input of size u, the function will perform at most two recursive calls on inputs
of size at most bu

2c, and will use at mostO(u) resources outside of the recursive
calls.1 For a given recurrence relation, our type system uses refinement types
to guarantee that a function typed with this recurrence relation performs the
correct number of recursive calls on parameters of the appropriate sizes.

2. These typing rules are justified by classic theorems from the field of analysis
of algorithms, such as the Master Theorem [CLRS09], the Akra-Bazzi method
[AB98], or C-finite-sequence analysis [KP11].

Guéneau et al. observed that reasoning with O-notation can be tricky, and
exhibited a collection of plausible-sounding, but flawed, inductive proofs [GCP18,
§2]. We avoid this pitfall via SynPlexity’s type system, which establishes whether

1The recurrence relation above is one possible instantiation of the Master Theorem [CLRS09,
§4.5 and §4.6]; it can also be instantiated as T(u) 6 2T(d u

2 e) +O(u). The type system makes use of
certain templates for instantiating the algorithm-analysis theorems that we use. The use of templates
means that the type system does not use all possible instantiations, but all instantiations used in the
type system are valid ones.
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a term satisfies a given recurrence relation. SynPlexity uses theorems that connect
the form of a recurrence relation—e.g., the number of recursive calls, and the
argument sizes in the subproblems—to its asymptotic complexity. In particular, the
SynPlexity type system does not encode inductive proofs of the kind that Guéneau
et al. show can go astray.

SynPlexity can synthesize functions with complexities that cannot be handled
by existing type-directed tools [PKSL16, KWPH19], and compares favorably with
existing tools on their benchmarks. Furthermore, for some domains, SynPlexity’s
type system allows us to discover auxiliary functions automatically (e.g., the split
function of a merge sort), instead of requiring the user to provide them.

Contributions. The contributions of our work are as follows:

• A type system that uses refinement types to check whether a program satisfies
a recurrence relation over a specified resource (§4.3).

• A type-directed algorithm that uses our type system to synthesize functions
with given resource bounds (§4.5, §4.6).

• SynPlexity, an implementation of our algorithm that, unlike prior tools, can
synthesize programs with desired asymptotic complexities (§4.7).

Complete proofs and details of the type system can be found in the appendices.

4.2 Overview

In this section, we illustrate the main components of our algorithm through an
example. Consider the problem of synthesizing a function prod that implements
the multiplication of two natural numbers, x and y. We want an efficient solution
whose time complexity is O(log x) with respect to the value of the first argument
x. In §4.2, we show how existing type-directed synthesizers solve this problem in
the absence of a complexity-bound constraint. In §4.2, we illustrate how to specify
asymptotic bounds in type-directed synthesis problems. In §4.2, we show how the
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tracking of recurrence relations can be used to establish complexity bounds as well
as guide the synthesis search.

Type-Directed Synthesis

We first review one of the state-of-the-art type-directed synthesizers, Synquid,
through the aforementioned example—i.e., synthesizing a program prod that com-
putes the product of two natural numbers. In Synquid, the specification is given as
a refinement type that describes the desired behavior of the synthesized function.
We specify the behavior of prod using the following refinement-type:

prod :: x:{Int | v > 0}→ y:{Int | v > 0}→ {Int | v = x ∗ y}.

Here the types of the inputs x and y, as well as the return type of prod are refined
with predicates. The refinement {Int | v > 0} declares x and y to be non-negative,
and the refinement {Int | v = x ∗ y} of the return type declares the output value
to be an integer that is equal to the product of the inputs x and y. In addition to
the specification, the synthesizer receives as input some signatures of auxiliary
functions it can use. The specifications of auxiliary functions are also given as
refinement types. In our example, we have the following functions:

even :: x:Int→ {Bool | x mod 2 = 0} dec :: x:Int→ {Int | v = x − 1}

double :: x:Int→ {Int | v = x + x} div2 :: x:Int→ {Int | v = bx2c}

plus :: x:Int→ y:Int→ {Int | v = x + y}

With the above specification and auxiliary functions, Synquid will output the
implementation of prod shown in Eqn. (4.1).

prod = λx.λy. if x==0 then x else plus y (prod (dec x) y) (4.1)

Synquid uses a sophisticated type system to guarantee that the synthesized term
has the desired type. Furthermore, Synquid uses its type system to prune the
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search space by only enumerating terms that can possibly be typed, and thus meet
the specification. Terms are enumerated in a top-down fashion, and appropriate
specifications are propagated to sub-terms. As an example, let us see how Synquid
synthesizes the function body—an if-then-else term—in Eqn. (4.1), which is of
refinement type {Int | v = x ∗ y}. Synquid will first enumerate an integer term for
the then branch—a variable term x. Then, with the then branch fixed, the condition
guard must be refined by some predicate ϕ under which the then branch (the term
x refined by v = x) fulfills the goal type {Int | v = x ∗ y}, i.e., ∀x, y > 0.ϕ ∧ v =

x =⇒ v = x ∗ y. With this constraint, Synquid identifies the term x == 0 as the
condition. Finally, Synquid propagates the negation of the condition to the else
branch—the else branch should be a term of type {Int | v = x ∗ y} with the path
condition x 6= 0—and enumerates the term plus y (prod (dec x) y) as the else
branch, which has the desired type.

The program in Eqn. (4.1) is correct, but inefficient. Let us count each call to an
auxiliary function as one step; and let T(x) denote the number of steps in which the
program runs with input x. The implementation in Eqn. (4.1) runs in Θ(x) steps
because T(x) satisfies the recurrence T(x) = T(x − 1) + 2, implying T(x) ∈ Θ(x).
Because, Synquid does not provide a way to specify resource bounds, such as
O(log x); one cannot ask Synquid to find a more efficient implementation.

Adding Resource Bounds

In our tool, SynPlexity, one can specify a synthesis problem with an asymptotic
resource bound, and can ask SynPlexity to find an O(log x) implementation of
prod. To express this intent, the user needs to specify (1) the asymptotic resource-
usage bound the synthesized program should satisfy, (2) the cost of each provided
auxiliary function, and (3) the size of the input to the program.

Asymptotic Resource Bound. We extend refinement types with resource annota-
tions. The annotated refinement types are of the form 〈τ;α〉 where τ is a regular
refinement type, and α is a resource annotation. The following example asks the
synthesizer to find a solution with the resource-usage bound O(log u):
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prod :: 〈x:{Int | v > 0}→ y:{Int | v > 0}→ {Int | v = x ∗ y},O(log u)〉

Cost of Auxiliary Functions. The auxiliary functions supplied by the user serve
as the API in terms of which the synthesized program is programmed. Thus, the
resource usage of the synthesized program is the sum of the costs of all auxiliary
calls made during execution. We allow users to assign a polynomial cost O(ua), for
some constant a, or a constant costO(1) to each auxiliary function. Here, u is a free
variable that represents the size of the problem on which the auxiliary function is
called.

In the prod example, all auxiliary functions are assigned constant cost, e.g., we
give even the signature even :: 〈x:Int→ {Bool | x mod 2 = 0},O(1)〉.

Size of Problems. The user needs to specify a size function, size:τ→ Int, that
maps inputs to their sizes, e.g., when synthesizing the sorting function for an input
of type list, the size function can be λl.|l|—the length of the input list. In the prod
example, the size function is size = λx.λy.x.

Checking Recurrence Relations

We extend Synquid’s refinement-type system with resource annotations, so that
the extended type system enforces the resource usage of terms. The idea of the
type system is to check if the given function satisfies some recurrence relation. If
so, it can infer that the function also satisfies the corresponding resource bound.
For example, according to the Master Theorem [BHS80], if a function f satisfies
the recurrence relation T(u) 6 T(bu

2c) +O(1) where u is the size of the input, then
the resource usage of f is bounded by O(log u). Checking if a function satisfies a
given recurrence relation can be performed by checking if the function contains
appropriate recursive calls—e.g., if a function contains one recursive call to a sub-
problem of half size, and consumes only a constant amount of resources in its body,
then it satisfies T(u) 6 T(bu

2c) +O(1).
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The following rule is an example of how we connect recurrence annotations and
resource bounds.

x : τ1, f : τ1 → τ2, Γ ` t :: 〈τ2; ([1, bu2c],O(1))〉

Γ ` (fix f. λx.t) :: 〈τ1 → τ2;O(log u)〉

The rule instantiates the Master Theorem example above. Note that, the annotation
([1, bu

2c],O(1)) states that the function body contains up to one recursive call to a
problem of size bu

2c, and the resource usage in the body of t (aside from calls to
f itself) is bounded by O(1). The rule states that if the function body t of type τ2

contains one recursive call to a sub-problem of size bu
2c, then the function will be

bounded by O(log u).
The implementation of prod shown in Eqn. (4.2) runs in O(log x) steps.

prod = λx. λy.if x == 0 then x else (4.2)

if even x then double (prod (div2 x) y)

else plus y (double (prod (div2 x) y))

To check that, SynPlexity’s type system counts the number of recursive calls along
any path of the function. There are three paths (two nested if-then-else terms)
in the program, and at most one recursive call along each path. Also, one can
check that the problem size of each recursive call is no more than bx

2c. For example,
the recursive call prod (div2 x) y calls to a problem with size div2 x, which is
consistent with [1, bu

2c], and u is x because size x y = x. In addition, the condition
that the resource usage of the body is bounded by O(1) is satisfied because only
auxiliary functions with constant cost are called.

4.3 The SynPlexity Type System

In this section, we present our type system. First, we give the surface language
and the types, which extend the Synquid liquid-types framework with resource
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Term t ::= e | b

E-term e ::= x | c | true | false | x e1 . . . en

I-term


Branching term

Function term

b ::=

f ::=
|

if e then t else t
match e with |i Ci (x1

i . . . xni ) 7→ ti
fix f.λx1 . . . λxn.t

Figure 4.1: SynPlexity syntax.

Logical expr. ϕ,φ,ψ ::= x | m(ψ) | > | ⊥ | c | ψ mod ψ | ψ∧ψ | ψ∨ψ

| ¬ψ | ψ = ψ | ψ ∗ψ | ψ/ψ | ψ+ψ | ψ−ψ
Ordinary type B ::= Bool | Int | D

Refinement type τ ::= {B | ϕ} | x1 :τ→ . . .→xn :τn→y : τ
Annotated type γ ::= 〈τ;α〉
Recurrence ann. α ::= ( [c1,φ1]f, . . . , [cn,φn]f;O(ψ) )
Environment Γ ::= · | x : γ; Γ | ϕ; Γ | recFun := x; Γ | args := x1 . . . xn; Γ

Figure 4.2: SynPlexity types.

annotations (§4.3). Then, we show the semantics of our language (§4.3). Finally,
we present SynPlexity’s type system (§4.3), which our synthesis algorithm uses to
synthesize programs with desired resource bounds.

Syntax and Types

Syntax. Consider the language shown in Fig. 4.1. In the language, we distinguish
between two kinds of terms: elimination terms (E-terms) and introduction terms
(I-terms). E-terms consist of variable terms, constant values c, and application
terms. Condition guards and match scrutinies can only be E-terms. I-terms are
branching terms and function terms. The key property of I-terms is that if the type
of any I-term is known, the types of its sub-terms are also known (which is not the
case for E-terms).

Types. Our language of types, presented in Fig. 4.2, extends the one of Syn-
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quid [PKSL16] with recurrence annotations, which are used to track recurrence
relations on functions. To simplify the presentation, we ignore some of the features
of the type system of Synquid [PKSL16] that do not affect our algorithm. In particu-
lar, we do not discuss polymorphic types and the enumerating strategy that ensures
that only terminating programs are synthesized. However, our implementation is
built on top of Synquid, and supports both of those features.

Logical expressions are built from variables, constants, arithmetic operators, and
other user-defined logical functions. Logical expressions in our type system can be
used as refinements ϕ, size expressions φ, or bound expressions ψ. Refinements ϕ
are logical predicates used to refine ordinary types in refinement types {B | ϕ}. We
usually use a reserved symbol v as the free variable in ϕ, and let v represents the
inhabitants, i.e., inhabitants of the type {B | ϕ} are valuations of v that satisfy ϕ. For
example, the type {Int | v mod 2 = 0} represents the even integers. Size expressions
and bound expressions are used in recurrence annotations, and are explained later.

Ordinary types includes primitive types and user-defined algebraic datatypesD.
Datatype constructors C are functions of type τ1→ . . .→τn → D. For example, the
datatype List(Int) has two constructors: Cons : Int→ List(Int)→ List(Int),
and Nil : List(Int). Refinement types are ordinary types refined with some
predicates ψ, or arrow types. Note that, unlike Synquid’s type system, SynPlexity’s
type system does not support higher-order functions—i.e., arguments of functions
have to be non-arrow types. All occurrences of τi and τ in arrow types x1 : τ→
. . .→xn :τn→y : τ have to be ordinary types or refined ordinary types.

We use recFun to denote the name of the function for which we are performing
type-checking, and args to denote the tuple of arguments to recFun. For example, in
the function prod shown in Eqn. (4.1), recFun=prod and args=x y An environment
Γ is a sequence of variable bindings x : γ, path conditions ϕ, and assignments for
variables recFun and args.

Recurrence Annotations. Annotated types are refinement types annotated with recur-
rence annotations. A recurrence annotation is a pair ([c1,φ1]f, . . . , [cn,φn]f; O(ψ))
consisting of (1) a set of recursive-call costs of the form [ci,φi]f, and (2) a resource-
usage bound of the form O(ψ). Intuitively, a recurrence annotation tracks the
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number ci of recursive calls to f of size φi in the first element [c1,φ1]f, . . . , [cn,φn]f
of the pair, as well as the asymptotic resource usage of the body of the function
(the second element O(ψ)). Using these quantities, we can compute a recurrence
relation describing the resource usage of the function recFun. For example, the
recurrence annotation ([1, u − 1]f, [1, u − 2]f;O(1)) corresponds to the recurrence
relation Tf(u) 6 Tf(u − 1) + Tf(u − 2) +O(1).

A recursive-call cost [c,φ]f associated with a function f denotes that the body of
f can contain up to c recursive calls to subproblems that have sizes up to the one
specified by size expressionφ. A size expression, φ, is a polynomial over a reserved
variable symbol u that represents the size of the top-level problem. In this chapter,
a problem with respect to a function g :: x1 : τ1→ . . . → xn : τn→ y : τ is a tuple of
terms e1 . . . en, to which g can be applied—i.e., ei has type τi for all i from 1 to n.
For the problems of function g, the size of each problem is defined by a size function
sizeg—a user-defined logical function that has type τ1→ . . . → τn→ Int; i.e., it
takes a problem of g as input and outputs a non-negative integer. In the body of g,
we say that a recursive-call term g e1 . . . en satisfies a size expressionφ if for all x1, . . .,
xn, sizeg Je1K . . . JenK 6 [(sizeg x1 . . . xn)/u]φ, where the xi’s are the arguments of
g and the JeiK’s are the evaluations of ei on input x1 . . . xn. (See §4.3 for the formal
definition of J·K.) Note that one annotation can contain multiple recursive-call costs,
which allows the function to make recursive calls to sub-problems with different
sizes. We often abbreviate 〈τ, (O(1))〉 as τ and omit f in recursive-call costs if it is
clear from context.

A resource boundO(ψ) of a non-arrow type specifies the bound of the resource
usage strictly within the top-level-function body. A resource bound in a signature
of an auxiliary function f specifies the resource usage of f. Bound expressions ψ in
O(ψ) are of the form ua logb u + c where a, b, and c are all non-negative constants,
and u represents the size of the top-level problem.

Example 4.1. In the function prod (Eqn. (4.2)), the recursive-call term prod (div2 x)
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y satisfies the recursive-call cost [1, bu
2 ]c, because sizeprod = λz.λw.z, and

sizeprod J(div2 x)K JyK = Jdiv2 xK = bx2c = [(sizeprod x y)/u]bu2 c.

Semantics and Cost Model

We introduce the concrete-cost semantics of our language here. The semantics serves
two goals: (1) it defines the evaluation of terms (i.e., how to obtain values), which
can be used to compute the sizes of problems in application expressions, and (2) it
defines the resource usages of terms.

Besides the syntax shown in Fig. 4.1, implementations of auxiliary functions
can contain calls to a tick function tick(c, t), which specifies that c units of a
resource are used, and the overall value is the value of t. Note that in our synthesis
language, we are not actually synthesizing programs with tick functions. We
assume that tick functions are only called in the implementations of auxiliary
functions. In the concrete-cost semantics, a configuration 〈t,C〉 consists of a term
t and a nonnegative integer C denoting the resource usage so far. The evaluation
judgment 〈t,C〉 ↪→ 〈t ′,C + C∆〉 states that a term t can be evaluated in one step
to a term (or a value) t ′, with resource usage C∆. We write 〈t,C〉 ↪→∗ 〈t ′,C+ C∆〉
to indicate the reduction from t to t ′ in zero or more steps. All of the evaluation
judgments are standard, and are shown in §4.4. Here we show the judgment of the
tick function, where resource usage happens.

〈tick(c, t),C〉 ↪→ 〈t,C+ c〉
Sem-Tick

For a term t, JtK denotes the evaluation result of t, i.e., 〈t, ·〉 ↪→∗ 〈JtK, ·〉.

Example 4.2. Consider the following function that doubles its input.

fix double.λx.if x = 0 then 0 else tick(1,2 + double(x-1)).

Let tbody denote the function body if x=0 then 0 else tick(1,2+double(x-1)). The
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result of evaluating double on input 5 is 10, with resource usage 5.

〈(fix double.λx.tbody)5, 0〉

↪→ 〈if 5=0 then 0 else tick(1,2+double(4)), 0〉

↪→ 〈if false then 0 else tick(1,2+ double(4)), 0〉

↪→ 〈tick(1,2+double(4)), 0〉 ↪→ 〈2+double(4), 1〉

↪→ 〈2+(fix double.λx.tbody)4, 1〉 ↪→∗ 〈4+double(3), 2〉 ↪→∗ 〈10+double(0), 5〉

↪→ 〈10+(if 0=0 then 0 else tick(1,2+double(0-1))), 5〉

↪→ 〈10+(if true then 0 else tick(1,2+double(0-1))), 0〉 ↪→ 〈10+0, 5〉

With the standard concrete semantics, the complexity of a function f is charac-
terized by its resource usage when the function is evaluated on inputs of a given
size.

Definition 4.3 (Complexity). Given a function fix f.λy.t of type : τ1 → τ2, with size
function sizef : τ1 → N, and suppose that for any possible input x, the configuration
〈(fix f.λy.t)x, 0〉 can be reduced to 〈v,Cx〉 for some value v. Then, if Tf : N → N is a
function such that, for all, u > 0, Tf(u) = supx s.t. sizef(x)=uCx, we say that Tf is the
complexity function of f.

Note that Defn. 4.3 assumes that the top-level term (fix f.λy.t)x can be reduced
to some value. Thus, Defn. 4.3 only applies to terminating programs.

Definition 4.4 (Big-O notation). Given two integer functions f and g, we say that f
dominates g, i.e., g ∈ O(f), if ∃c,M > 0. ∀x > c. g(x) 6Mf(x).

In the rest of this chapter, we use Tf to denote the complexity function of the
function f, and we say the complexity of f is bounded by a function g if Tf ∈ O(g). As
an example, the complexity of the double function shown in Ex. 4.2 is Tdouble(u) := u,
and hence Tdouble(u) ∈ O(u).

Auxiliary functions. We allow users to supply signatures for auxiliary functions,
instead of implementations. It is an obligation on users that such signatures be sen-
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sible; in particular, when the user gives the signature 〈τ1→ {B | ϕ(v,y)},O(ψ(u))〉
for auxiliary function f, the user asserts that there exists some implementation
fix f.λy.t of f, such that: 1)for any input x, the output of f on x satisfies ϕ, i.e.,
ϕ(J(fix f.λy.t)xK, x) is valid; and 2)for any input x, the complexity of f is bounded
by ψ(u), i.e., Tf(u) ∈ O(ψ(u)). Signatures always over-approximate their imple-
mentations, as illustrated by the following example.

Example 4.5. The signature doubleRelaxed :: 〈x:Int → {Int | v 6 3 ∗ x},O(u2)〉
describes an auxiliary function that computes no more than the input times 3, and has
quadratic resource usage. Note that the function double shown in Ex. 4.2 can be an
implementation of this signature because Jdouble(x)K = 2 ∗ x 6 3 ∗ x, and the complexity
function Tdouble(u) = u is in O(u2).

Typing Rules

The typing rules of SynPlexity are inspired by bidirectional type checking [PT00]
and type checking with cost sharing [KWPH19]. Recall that we use recFun to
denote the name of the function for which we are performing type-checking, and
args to denote the tuple of arguments to recFun.

An environment Γ is a sequence of variable bindings of the form x : γ, path
conditions ϕ, and assignments of the form x = ϕ for recFun and the components
of args. SynPlexity’s typing rules use three judgments:

• Γ ` t :: γ states that t has type γ,

• Γ ` γ1 <: γ2 states that γ2 is a subtype of γ1, and

• Γ ` γ . γ1|γ2 states that γ1 and γ2 share the costs in γ

Subtyping. Subtyping judgments are shown in Fig. 4.3. The <:-Fun, <:-Sc, and
<:-Refl are standard subtyping rules for refinement types. The remaining rules
allow us to compare resource consumption of recurrence annotations. For example,
if one branch of some branching term has type 〈τ, ([1, bu

3c],O(ψ))〉, it can be over-
approximated by a super type 〈τ, ([1, bu

2c],O(ψ))〉. The idea is that the resource
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Γ ` τ <: τ ′
Γ ` τy <: τx Γ ;y : τy ` [y/x]τ <: τ ′

Γ ` x : τx → τ <: y : τy → τ ′
<:-Fun

Γ ` B <: B ′ Γ |= ϕ =⇒ ϕ ′

Γ ` {B | ϕ} <: {B ′ | ϕ ′}
<:-Sc

Γ ` B <: B
<:-Refl

c ′ > c Γ |= [x/v]φ∧ [x ′/v]φ ′ ⇒ x ′ > x
Γ ` [c,φ] <: [c ′,φ ′] <:-Rec Γ |= ψ ∈ O(ψ ′)

Γ ` O(ψ) <: O(ψ ′)
<:-Bound

<:-Rec-Split
Γ |= φ1 = φ2

Γ ` 〈τ ′, ([c1 + c2,φ1], [c3,φ3] . . . [cn,φn];O(ψ))〉 <: 〈τ, ([c1,φ1], [c2,φ2], . . . [cn,φn];O(ψ))〉

<:-Rec-Combine
Γ |= φ1 = φ2

Γ ` 〈τ, ([c1,φ1], [c2,φ2], . . . [cn,φn];O(ψ))〉 <: 〈τ ′, ([c1 + c2,φ1], [c3,φ3] . . . [cn,φn];O(ψ))〉

Γ ` τ <: τ ′ ∀i.Γ ` [ci,φi] <: [c ′i,φ ′i] Γ ` O(ψ) <: O(ψ ′)
Γ ` 〈τ, ([c1,φ1], . . . [cn,φn];O(ψ))〉 <: 〈τ ′, ([c ′1,φ ′1] . . . [c ′n,φ ′n];O(ψ ′))〉

<:-Anno-Rec

Figure 4.3: Subtyping rules.

usage of an application calling to a problem of size bu
2c, will be larger than the

application calling to a smaller problem of size bu
3c (assuming all resource usages

are monotonic).
Subtyping rules also allow the type system to compare branches with a different

number of recursive calls. For example, base cases of recursive procedures have
no recursive calls, and thus have types of the form 〈τ, ([],O(ψ))〉. With subtyping,
these types can be over-approximated by types of the form 〈τ, ([c,φ],O(ψ))〉.

Cost sharing. When a term has more than one sub-term in the same path, e.g.,
the condition guard and the then branch are in the same path in an ite term,
the recursive-call costs of the term will be shared into its sub-terms. The sharing
operator α . α1|α2 partitions the recursive-call costs of α into α1 and α2—i.e., the
sum of the costs in α1 and α2 equals the costs in α. Sharing rules are shown in
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Γ ` γ . γ1|γ2

c1, c2 > 0 c1 + c2 6 c

Γ ` [c,φ] . [c1,φ] | [c2,φ] S-Pot Γ ` [c,φ] . [c,φ] S-Refl

∀i.Γ ` [ci,φi] . [c1
i ,φi] | [c2

i ,φi]
Γ ` ([c1,φ1], . . . , [cn,φn];O(ψ)) . ([c1

1,φ1], . . . , [c1
n,φn];O(ψ)) | ([c2

1,φ1], . . . , [c2
n,φn];O(ψ))

S-Anno

Γ ` α . α1 | α2

Γ ` 〈τ,α〉 . 〈τ,α1〉 | 〈τ,α2〉
S-Type Γ ` γ . γ | γ ′ Γ ` γ ′ . γ2 | γ3

Γ ` γ . γ1 | γ2 | γ3
S-Mul

Figure 4.4: Sharing rules

Fig. 4.4. The idea is that a single cost c can be shared to two costs c1 and c2 such
that their sum is no more than c. An annotation can be shared to two parts if every
recursive cost [ci,φi] in it can be shared to two parts [c1

i,φ1] and [c2
i,φ2]. Finally,

annotations can also be shared to more than two parts.

Example 4.6. There are multiple ways to share the annotation ([1, bu
2 c], [1, du

2 e];O(u)):

Γ ` ([1, bu2 c], [1, du2 e];O(u)) . ([1, bu2 c], [1, du2 e];O(u)) | ([ ],O(u)),

where one annotation contains both recursive-call costs [1, bu
2 c], [1, bu

2 c]; and the other
contains no recursive-call cost. And

Γ ` ([1, bu2 c], [1, du2 e];O(u)) . ([1, bu2 c];O(u)) | ([1, du2 e];O(u)),

where each annotation contains one recursive-call cost.

Function terms. The rule T-Abs shown below is really a rule-schema that is parameter-
ized in terms of an annotation (A) for a function body t, and a resource bound (B)

for the function term. If the function body t has some recurrence relation described
by the annotation A, then the function f will satisfy the resource-usage bound B.
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Table 4.1: Annotations that can be used to instantiate the rule T-Abs.
Bound (B) Recurrence relation Annotation (A)

Master Theorem O(log u) T(b u
d
c) +O(1), d > 2 ([1, b u

d
c];O(1)), d > 2

O(u log u) dT(b u
d
c) +O(u), d > 2 ([d, b u

d
c];O(u)), d > 2

Akra–Bazzi O(u log u) T(du
2e) + T(b

u
2c) +O(u) ([1, du

2e], [1, bu
2c];O(u))

C-Finite Seq. O(u) T(u− d) +O(1), d > 1 ([1, u − d];O(1)), d > 1
O(u2) T(u − d) +O(u), d > 1 ([1, u − d];O(u)), d > 1

Some example patterns are shown in Tab. 4.1.2

Γ ′ = [recFun← f][args← x1 . . . xn]Γ
γf = 〈x1 : τ1 → . . .→ xn : τn → τ, (B)〉

Γ ′; x1 :〈τ1,O(1)〉; . . . ; xn :〈τn,O(1)〉; f : γf ` t :: 〈τ, (A)〉

Γ ` fix f.λx1 . . . λxn.t :: 〈x1 : τ1 → . . .→ xn : τn → τ, (B)〉
T-Abs

For example, if the annotation of the function body is ([1, bu
2c];O(1)), then the

resource bound in the function type will be O(log u), i.e., the resource usage of f is
bounded by O(log(sizef x1 . . . xn)).

At the same time, the rule stores the name f of the recursive function into recFun,
and its arguments as a tuple into args.

Example 4.7. We use a function fix bar.λx.if x = 1 then 1 else 1 + bar(div2 x) to
illustrate the first pattern in Tab. 4.1. The body of bar has the annotated type ([1, bu

2 c];O(1))
because (i) there exists only one recursive call to a sub-problem whose size is half of the
top-level problem size u, and (ii) the resource usage inside the body is constant (with the
assumption that all auxiliary functions have constant resource usage). This type appears in
row 1, column 4 of Tab. 4.1. Consequently, the recurrence relation of bar is T(bu

2 c) +O(1)
(row 1, column 3), where T(u) is the resource usage of bar on problems with size u. Finally,
according to the Master Theorem, the resource usage of bar is bounded by O(log u) (row
1, column 2).

2The patterns shown in Tab. 4.1 are those we used in the implementation. Patterns capturing
other recurrence relations can be added to the type system if needed.
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Branching terms. In rule T-If, the condition has type Bool with refinement ϕe. Two
branches have different types—the then branch follows the path condition ϕe,
and the refinement ϕ of the branch term, while the else branch follows the path
condition ¬ϕe. By having both branches share the same recurrence annotation, T-If
can introduce some imprecision. In particular, if the branches belong to different
complexity classes, the annotation of the conditional term will be the upper bound
of both branches.

Γ ` α . α1|α2 Γ ` e :: 〈{Bool | ϕe},α1〉
Γ ,ϕe ` t1 :: 〈{B | ϕ},α2〉 Γ ,¬ϕe ` t2 :: 〈{B | ϕ},α2〉

Γ ` if e then t1 else t2 :: 〈{B | ϕ},α〉
T-If

The rule T-Match is slightly different: (1) there can be more than two branches,
(2) all branches have the same type 〈τ,α2〉, and (3) variables in each case
Ci (x1

i . . . xni ) are introduced in the corresponding branch.

Γ ` α . α1|α2 Γ ` e :: 〈τs,α1〉
Ci = τ1→ . . .→τn→τs Γ ; x1

i : τ1; . . . ; xni : τn ` ti :: 〈τ,α2〉

Γ ` match e with |i Ci (x1
i . . . xni ) 7→ ti :: 〈τ,α〉

T-Match

E-terms. The typing rules for E-terms are shown in Fig. 4.5. The two rules for
application terms are the key rules of our type system. Let us first look at the
E-RecApp rule for recursive-call terms. Recall that the recursive-call annotation
tracks the number of recursive calls and the sizes of sub-problems. If the term
f e1 . . . en is a recursive call—i.e., Γ(recFun) = f—the number of recursive calls
in one of the recursive-call costs will increase by one—i.e., [ck,φk] in the premise
becomes [ck + 1,φk] in the conclusion. Also, we want to make sure that the size
of the subproblem this application term is called on satisfies the size expression
φk. If each callee term is refined by the predicate ϕi, i.e., Γ ` ei :: 〈{Bi | ϕi},αi〉
, then the fact that the size of the problem e1 . . . en satisfies φk can be implied by
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Γ ` e :: γ
Γ ` x :: γ ′ γ ′ <: γ

Γ ` x :: γ
E-SubType

Γ(x) = γ

Γ ` x :: γ
E-Var

Γ ` g : 〈x1 :τ1→ . . .→xm :τm → {B | ϕ}, (O(ψg))〉
Γ(recFun) 6= g Γ ` ([c1,φ1], . . . , . . . , [cn,φn];O(ψ)) . α1| . . . |αm
∀1 6 i 6 m Γ ` ei :: 〈{Bi | ϕi},αi〉 Γ ` {Bi | ϕi} <: τi

Γ |=

m∧
i=1

[yi/v]ϕi⇒
(
[sizeg y1 . . .ym/u]ψg ∈ O([size Γ(args)/u]ψ)

)
τ = {B | [zi/xi]ϕ∧

∧
i=1

[zi/v]ϕi} zi /∈ FV(ϕ), zi /∈ FV(ϕi)

Γ ` ge1 . . . em :: 〈τ, ([c1,φ1], . . . , [cn,φn];O(ψ))〉
E-App

Γ ` f : 〈x1 :τ1→ . . .→xm :τm → {B | ϕ},α〉 Γ(recFun) = f
Γ ` ([c1,φ1], . . . , [ck,φk], . . . , [cn,φn];O(ψ)) . α1| . . . |αm
∀1 6 i 6 m Γ ` ei :: 〈{Bi | ϕi},αi〉 Γ ` {Bi | ϕi} <: τi

Γ |=

m∧
i=1

[yi/v]ϕi⇒(size y1 . . .ym 6 [size Γ(args)/u]φk)

τ = {B | [zi/xi]ϕ∧
∧
i=1

[zi/v]ϕi} zi /∈ FV(ϕ), zi /∈ FV(ϕi)

Γ ` fe1 . . . em :: 〈τ, ([c1,φ1], . . . [ck + 1,φk], . . . , [cn,φn];O(ψ))〉
E-RecApp

Figure 4.5: Typing rules of E-terms

the validity of the predicate
∧m
i=1[yi/v]ϕi⇒(size y1 . . .ym 6 [size Γ(args)/u]φk).

We introduce validity checking, written Γ |= ϕ , to state that a predicate expression
ϕ is always true under any instance of the environment Γ .

Example 4.8. Recall Eqn. (4.2). According to the rule T-RecApp, the recursive call
prod (div2 x) y has type 〈{Int | v = bx

2c ∗ y}, ([1, u
2 ]);O(1)〉. Note that the first

argument (div2 x) has type {Int | v = bx
2c}, the second argument y has type {Int | v = y},

the size function is sizeprod = λz.λw.z, and the arguments in the context are Γ(args) =
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x y. Therefore, the following predicate is valid:

[y1/v](v = bx2c)∧ [y2/v](v = y)⇒sizeprod y1 y2 = [sizeprod Γ(args/u)]bu2 c

⇔ (y1 = b
x

2c)∧ (y2 = y)⇒y1 = b
x

2c.

The rule E-App states that callees have types τi, and the resource usage does not
exceed the bound O(ψ) in the annotation. Similar to the E-RecApp rule, the size of
the problem g calls to is [sizeg y1 . . .ym/u] with the premise

∧m
i=1[yi/v]ϕi. The val-

idation checking
∧m
i=1[yi/v]ϕi⇒

(
[sizeg y1 . . .ym/u]ψg ∈ O([size Γ(args)/u]ψ)

)
in the rule states that for any instance of Γ , the size of the problem in the application
term is in the big-O class O([size Γ(args)/u]ψ). Note that the membership of
big-O classes can be encoded as an ∃∀ query. The query is non-linear, and hence
undecidable in general. However, we observed in our experiments that for many
benchmarks the query stays linear. Furthermore, even when the query is non-linear,
existing SMT solvers are capable of handling many such checks in practice.

Soundness

We assume that the resource-usage function ψ and the complexities T of each
function are all nonnegative and monotonic integer functions—both the input and
the output are integers. We show soundness of the type system with respect to the
resource model. The soundness theorem states that if we derive a bound O(ψ) for
a function f, then the complexity of f is bounded by ψ.

Theorem 4.9 (Soundness of type checking). Given a function fix f.λx1 . . . λxn.t and
an environment Γ , if Γ ` fix f.λx1 . . . λxn.t :: 〈τ,O(ψ)〉, then the complexity of f is
bounded by ψ.

Our type system is incomplete with respect to resource usage. That is, there
are functions in our programming language that are actually in a complexity class
O(p(x)), but cannot be typed in our type system. The main reason why our type
system is incomplete is that it ignores condition guards when building recurrence
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relations, and over-approximates if-then-else terms by choosing the largest com-
plexity among all the paths including even unreachable ones.

4.4 Semantics

In this section, we presented two kinds of semantics: 1) the concrete small step
semantics which define the concrete complexity of functions, and 2) a loose seman-
tics which over-approximates the concrete semantics and will be used in the proof
of the soundness theorem.

Concrete semantics. The evaluation rules of concrete-cost semantics are shown in
Fig. 4.6. In the concrete-cost semantics, a configuration 〈t,C〉 consists of a term t

and a nonnegative integer C denoting the resource usage so far. The evaluation
judgment 〈t,C〉 ↪→ 〈t ′,C+ C∆〉 states that a term t can be evaluated in one step to
a term (or a value) t ′, with resource usage C∆. We write 〈t,C〉 ↪→∗ 〈t ′,C+ C∆〉 to
indicate the reduction from t to t ′ in zero or more steps.

Polynomial-Bounded Refinement Type. Before introducing the loose semantics, we
introduce a class of refinement type that can be over-approximated as polynomials.

The resource usage of a function call depends on the size of the problem it makes
calls to. However, predicates used to refine functions could be imprecise, and thus
we may have to reason about sizes of problems with imprecise refinements. For
example, consider a function square::〈Int→ {Int | v > 0}, (O(u))〉. In the nested
application term square (square x), we know the size of the problem of the inner
application is x, but we do not know the size of the problem square x of the outer
application (all we know about square x is that it is non-negative). To reason about
input sizes, we introduce a class of refinement types with which we can infer upper
bounds of the sizes of problems.

Let us first assume that all terms and variables are integers or integer functions
(we will discuss the case where terms and variables hold values other than integers
later). For an integer refinement type τ = {Int | ϕ} refined by a predicate ϕ(v, x)
over v and a tuple of variables x, we say that ϕ is bounded by a polynomial term p(x),
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written as ϕ @ p if

∃c > 0∀x∀v. x>c∧ϕ(v, x) =⇒ |v| < p(x).

That is, there exist some positive constants c such that, for any x (point-wise) greater
than c and for any v, if v, x satisfying ϕ, the absolute value |v| is always less than
p(x).

Example 4.10. The refinement type τ := {Int | v 6 2x+ y∨ v 6 x+ 2y} is bounded by
the expression p1 := 2x+ 2y and the expression p2 := 3x+ 3y but not p3 := 2x+ y+ 1,
i.e., τ @ p1, τ @ p2, and τ 6@ p3.

For datatypeD other than Int, we assume that there is an intrinsic measure with
output type Int for everyD, denoted by |·|D (we omit the subscript if it is clear from
the context). Intrinsic measures are specified by users for user-defined datatypes.
For example, the intrinsic measure of lists can be defined as a function that computes
the length of lists, i.e., |l| = len l for any list l. The instinct measure of Int term is
the absolute-value function. The condition of p bounding τ = {D |ϕ(v, x)} becomes

∃c > 0∀x∀v |x|>c∧ϕ(v, x) =⇒ |v| < p(|x|).

A loose cost model. The semantics given previously give a standard notion of complex-
ity. However, we find two challenges connecting these semantics to our synthesis
algorithm. First, we allow users to supply auxiliary functions as signatures involv-
ing big-O notation as opposed to implementations. Second, our synthesis algorithm
ensures complexity through the tracking of recursive calls, which are not present
in the concrete semantics given above. To address these challenges we introduce
an intermediate semantics that uses recurrence relations and big-O notation. We
then show in Thm. 4.11 that this intermediate semantics approximates complexity
in the sense of Defns. 4.3 and 4.4.

The signatures of auxiliary functions g are of the form 〈τ1 →
{B | ϕ(v,y)},O(ψ(u))〉. Although we don’t really have the implementation
of g, we assume that there exists some implementation fix g.λy.t of g, such that
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〈tick(c, t),C〉 ↪→ 〈t,C+ c〉
Sem-Tick

v are values
〈(fix f.λx.t)v,C〉 ↪→ 〈[(fix f.λx.t)/f][v/x]t,C〉

Sem-App

〈t1, 0〉 ↪→ 〈t2,C∆〉
〈(fix f.λx.t)t1,C〉 ↪→ 〈(fix f.λx.t)t2,C+ C∆〉

Sem-App-Arg

〈if true then t1 else t2,C〉 ↪→ 〈t1,C〉
Sem-Cond-True

〈if False then t1 else t2,C〉 ↪→ 〈t2,C〉
Sem-Cond-False

〈tc, 0〉 ↪→∗ 〈b,C∆〉 b is a Boolean value
〈if tc then t1 else t2,C〉 ↪→ 〈if b then t1 else t2,C+ C∆〉

Sem-Cond-Guard

v are values
〈match Cj(v) with |iCi(xi) 7→ ti,C〉 ↪→ 〈[v/xi]ti,C〉

Sem-Match

Sem-Match-Scrutinee
〈ts, 0〉 ↪→∗ 〈Cj(v),C∆〉 v are values

〈match ts with |iCi(xi) 7→ ti,C〉 ↪→ 〈match Cj(v) with |iCi(xi) 7→ ti,C+ C∆〉

Figure 4.6: Evaluation rules of the concrete small-step semantics.

• for any input x, the output of g on x satisfies the signature, i.e.,
〈(fix g.λy.t)x, 0〉 ↪→∗ 〈vx,Cx〉 implies ϕ(vx, x); and

• for any input x, the complexity of g is bounded byψ(u), i.e., Tg(n) ∈ O(ψ(n)).

For the top-level function we are evaluating, we assume that its signature 〈τ1 →
{B |ϕ(v,y)},O(ψ(u))〉 is also given, whereas the semantics of f is over-approximated
by its refinement, i.e., for any input x, 〈(fix f.λy.t)x, 0〉 ↪→∗ 〈vx,Cx〉 impliesϕ(vx, x).
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Now we introduce our intermediate loose semantics. Formally, reductions are
defined between configurations. Each configuration 〈t̂,R〉# is a pair of an extended
term t̂ and a recurrence parameter R. Extended terms t̂ ::= t | ϕ are either terms
t or formula expressions ϕ. Recurrence parameters R ::= φ | ⊥ | R ‖R are either
size expressions φ, or parameters combined by a parallel operator ‖, i.e., R is a
collection of size expressions. The parallel operator ‖ distributes over the plus, i.e.,
(R1 ‖ R2) +R3 = R1 +R2 ‖ R1 +R3. Intuitively, a parameter R without parallelism
denotes the recurrence relation of the function along one path. When the function
contains more than one path, the overall parameter will be sub-parameters in
parallel.

We use 〈t,R〉# 7→ 〈ϕ,R ′〉# to denote a step of a reduction. The goal is to reduce a
term t in a function f to a predicateϕ such thatϕ describes the behavior of t—ϕ is a
refinement of t. At the same time, recurrence relations can be built by incrementally
appending expressions representing resource usage to the recurrence parameter R.

Because we are building recurrence relations for a function f, the reduction
always starts from a fix-term and an empty parameter ⊥. The result configuration
is the refinementϕ of the function body twith the recurrence parameter R. We use
the function T : Int→ Int to denote the resource usage of the function f; hence,
the recurrence parameter we build for f will be the recurrence relation of resource
usage T .

〈t, 0〉# 7→ 〈ϕ,R〉#

〈fix f.λx1..λxn.t, ⊥〉# 7→ 〈ϕ, R〉#
LooseSem-Fix

In our loose semantics, each auxiliary function g has a resource annotation
(O(ψg)) denoting the resource usage of g, a logical signature ϕg denoting the
behavior of g, and a size function sizeg. Resource usage happens when an auxiliary
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function is called.

g :〈x1 :τ1→ ..→xn :τn→ {B | ϕg},O(ψg)〉

∀i.〈ei, 0〉# 7→ 〈ϕi,Ri〉# ϕ := ϕg ∧

n∧
i=1

[xi/v]ϕi ∀i.ϕi @ vi

〈g e1.. en, 0〉# 7→ 〈ϕ, [(sizeg v1.. vn)/u]ψg +
n∑
i=1

Ri〉#
LooseSem-App

That is, if each callee ei can be reduced to a predicate ϕi bounded by vi with
the recurrence parameter change Ri, the non-recursive application term g e1.. en
will be reduced to the predicate ϕ with resource usage [sizeg v1.. vn/u]ψg (the
resource usage of g) and

∑n
i=1 Ri (resource usage used to evaluate {ei}i). We over-

approximate the size of the problem e1..en using the upper bounds vi of callee’s
behavior predicates ϕi. The result predicate ϕ is actually the behavior ϕg of gwith
each argument xi instantiated with the semantic predicates [xi/v]ϕi of callee ei.

The semantics of performing a recursive call is a bit different. The resource
usage is instead T(sizef v1.. vn)—the resource usage T on a sub-problem with size
sizef v1.. vn where the vi’s are over-approximations of the callee ei’s.

LooseSem-RecApp
∀i.〈ei, 0〉# 7→〈 ϕi,Ri〉# ∀i.ϕi @ vi

f :〈x1 :τ1→ ..→xn :τn→ {B | ϕf},O(ψf)〉 ϕ := ϕf ∧

n∧
i=1

[xi/v]ϕi

〈f e1.. en, 0〉# 7→ 〈ϕ, T(sizef v1.. vn) +
n∑
i=1

Ri〉#

The reduction of if-terms will result in ite predicates. The resulting recurrence
parameter Re + R1 ‖ Re + R2 uses the parallel operator because there are two paths
in an ite term.

LooseSem-Cond
〈e, 0〉# 7→ 〈ϕe,Re〉# 〈t1, 0〉# 7→ 〈ϕ1,R1〉# 〈t2, 0〉# 7→ 〈ϕ2,R2〉# ϕ := ϕ1 ∨ϕ2

〈if e then t1 else t2, 0〉# 7→ 〈ϕ, Re + R1 ‖ Re + R2〉#
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The rules for match term and variable term are similar.

LooseSem-Match
∀i. 〈ti, 0〉# 7→ 〈ϕi,Ri〉# ϕ := ϕ1 ∨ . . . ∨ϕm

〈match e with |i Ci (x1
i . . . xni ) 7→ ti, 0〉# 7→ 〈ϕ, Re + R1 ‖ . . . ‖ Re + Rm〉#

〈x, 0〉# 7→ 〈|v| = |x|, 0〉#
LooseSem-Var

With the above rules, we can then say the complexity of a function to be any
expression that satisfy the recurrence parameter of the function.

Theorem 4.11 (Complexity bounds). Given a function term fix f.λx.tf, the signature
type of f, and the signature types of all auxiliary function used in f, if

• the refinements of auxiliary functions and f are all bounded by some monotonic
non-decreasing polynomials;

• the function body tf can be reduced to 〈·,Rf〉#, where Rf is of form Rf,1 ‖ .. ‖ Rf,m,
and none of the Rf,i’s contain an occurrence of the parallel operator; and

• there exists a function ψ that satisfies

∀i. T(sizef(x)) 6 Rf,i =⇒ T(sizef(x)) ∈ O(ψ(sizef(x))),

then the complexity Tf of f is bounded by the function ψ, i.e., Tf ∈ O(ψ).

Proof. We first show by induction on a loose semantic derivation that for any term
t, if

• 〈t, 0〉# 7→ 〈ϕt,R〉#, where R is of form R1 ‖ .. ‖ Rl, and none of the Ri’s
contains an occurrence of the parallel operator; and

• 〈[(fix f.λx.tf/f][(fix g.λy.tg/g][in/x]t, 0〉 ↪→∗ 〈vt,Ct〉 for all in,
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then we have for any in, [vt/v][in/x]ϕt is satisfiable—that is, the loose semantics
ϕt over-approximate the concrete semantics vt—, and ∃c,k > 0 ∀in ∃j. sizef(in) >
c =⇒ Ct < k ∗ Rj.

Base case. The base case is variable term. The ϕ for variable term is precise and
the resource usage are 0 in both semantics.

Non-recursive application terms. When t = g e1.. en is an non-recursive appli-
cation term, with the induction hypothesis, we have that all ei’s loose semantics
ϕi over-approximates their concrete semantics vei , i.e., [vei/v][in/x]ϕei is satisfi-
able for all ei and in. According to the first assumption of the signature of aux-
iliary functions, the predicate ∀in. ϕg(vt, vei) is valid. The loose semantic of t is
ϕt := ϕg(v,y)∧ni=1 [yi/v]ϕei . Finally, the predicate

∀in.[vt/v][in/x]ϕt = ϕg(vt,y)∧ni=1 [yi/v][in/x]ϕei

is satisfiable with the assignment yi ← vei for all i.
According to the second assumption on signatures of auxiliary functions,

we have Tg(n) ∈ O(ψg(n)). That is, ∃c,k ∀in. sizeg(in) > c =⇒ Ct 6

k ∗ψg(sizeg(|vei |)).
Then we have ∃c,k∀in. sizeg(in) > c =⇒ Ct 6 k ∗ ψg((sizeg v1.. vn))

because each vi is the bound of ϕi and hence the bound of the concrete value vei .
Recursive application terms. When t = f e1.. en is a recursive application

term, the proof of the behavior part is similar as above because we have the same
behavior assumption on the signature of the top-level function. The concrete
cost Ct of t is bounded by Tf(sizef(|ve1 |, . . . , |ven |)), where Tf is the complexity
function of f, plus the concrete cost of evaluating each ei (which is bounded by∑

Ri according to the induction hypothesis). Note that here Tf is an uninter-
preted monotonic non-decreasing non-negative function. The loose semantics
T(sizef( v1.. vn)) also contains an uninterpreted monotonic non-decreasing non-
negative function T . In this proof, we generalize the comparison symbol 6 to
Tf(n) 6 T(n ′) if n 6 n ′, that is, the comparison between uninterpreted func-
tions is the result of comparison between their inputs. With such generalization,
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Tf(sizef(|ve1 |, . . . , |ven |)) 6 T(sizef( v1.. vn)) because each vei is bounded by vi
according to the induction hypothesis.

Branching terms. When t = if e then t1 else t2 is a conditional term, the con-
crete cost Ct1 +Ce or Ct1 +Ce of it is bounded by the loose cost Re + R1 or Re + R2,
respectively, according to the induction hypothesis. The concrete semantics is either
vt1 or vt2 . According to the induction hypothesis, ϕt1 ∨ϕt2 over-approximates both
branches.

The case of match term is similar to the conditional term.
Now, for any input in, the complexity function Tf of the top-level function f

should satisfy the recurrence parameter along one of the path, i.e.,

∃k∀in ∃j.Tf(szief(in)) 6 k ∗ [Tf/T ]Rf,j.

So, if a bound ψ dominating the loose cost for every path, it will always dominate
the complexity Tf of f.

Example 4.12. For the program shown in Eqn. (4.2), there are three paths. At the beginning,
fix prod.λx.λy.t is reduced to 〈ϕ, T(sizeprod x y) 6 0 + R〉# where R is the reduction
result of the function body, and sizeprod x y = x since the size function for prod is λz.λw.z

The first ite term if x == 0 then t1 else t2 is reduced to the configuration
〈ite(x == 0, ϕ1, ϕ2),Re + R1 ‖ Re + R2〉# where the condition contain one equiva-
lence operator (Re = 1), the then branch has 0 resource usage (it is a variable term)
(R1 = 0), and the else branch has resource usage R∈, which we learn from the reduction
of t2.

The application term div2 x is reduced to 〈v = z
2 ∧ z = x, 1〉# since the resource usage

of div2 is O(1).
The recursive-application term prod (div2 x) y is reduced to 〈v = z ∗ w ∧ z =

x
2 ∧w = y, R0 + T(

x
2 ) + 1〉#

Overall the recurrence relation can be built as T(x) 6 1 ‖ T(x) 6 4 + T(x2 ) ‖ T(x) 6
5 + T(x2 ). Thus the complexity of prod is bounded by log x since T(x) 6 1 =⇒ T(x) ∈
O(log x), and, T(x) 6 5 + T(x2 ) =⇒ T(x) ∈ O(log x) according to the Master Theorem.
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4.5 The SynPlexity Synthesis Algorithm

In this section, we present the SynPlexity synthesis algorithm, which uses annotated
types to guide the search of terms of given types.

Overview of the Synthesis Algorithm

The algorithm takes as input a goal type f : 〈τ,O(ψ)〉, an environment Γ that
includes type information of auxiliary functions, and the size functions for f and
all auxiliary functions. The goal is to find a function term of type 〈τ,O(ψ)〉.

The algorithm uses the rules of the SynPlexity type system to decompose goal
types into sub-goals, and then applies itself recursively on the sub-goals to synthe-
size sub-terms. Concretely, given a goal γ, the algorithm tries all the rules shown in
§4.3, where the type in the conclusion matches γ, to construct sub-goals: for each
sub-term t in the conclusion, there must be a judgment Γ ` t :: γ ′ in the premise;
thus, we construct the sub-goal γ ′—the desired type of t. For each I-term rule,
the type of each sub-term is always known, and thus a fixed set of sub-goals is
generated. For each E-term rule (Fig. 4.5), the algorithm enumerates E-terms up
to a certain depth (the depth can be given as a parameter or it can automatically
increase throughout the search). If the algorithm fails to solve some sub-goal using
some E-term rule, it backtracks to an earlier choice point, and tries another rule.

Because the top-level goal is always a function type, the algorithm always starts
by applying the rule T-Abs, which matches the resource bound O(ψ) using Tab. 4.1
to infer a possible recurrence annotation for the type of the function body. Also
T-Abs constructs a sub-goal type for the function body. In the rest of this section,
we assume that goals are not function types.

Algorithm 2 GenerateE(Γ ,γ,d)
Input : Context Γ , goal type γ = 〈{B | ϕ},α〉, depth bound d
for t← EnumerateE(Γ ,d,B) do

if CheckE(t, Γ ,γ) then return t
end
return ⊥
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Variables. Given a goal γ, the algorithm first tries to apply rule E-Var, which simply
checks if any variable in the environment is of type γ, and hence is a solution. If no
variable in the environment could be a solution, it starts enumerating E-terms up
to a certain depth.

Synthesizing Application Terms. To enumerate application terms, the algorithm
first enumerate a term t that satisfies the base types B in the goal annotated type
〈{B |ϕ}, ([c1,φ1]..[cn,φn];O(ψ))〉. Then, the algorithm checks if the total number of
recursive calls in the term t exceeds the bound

∑
i ci. If yes, the term t is rejected.

Otherwise, the sizes of sub-problems of recursive calls are checked. Formally, to
check if a recursive application term f(t1, .., tm) is consistent with some [ck,φk], the
algorithm queries the validity of the following predicate

(

m∧
i=1

[yi/v]ϕi⇒(sizef(y1 .. ym) = [sizef(Γ(args))/v]φk)),

where the yi’s are fresh variables, and the ϕi’s are the refinements of the ti
terms. If the sizes of sub-problems are not consistent with the recursive-call costs
[c1,φ1]..[cn,φn], the term t is rejected. Note that one recursive call can possibly
satisfy more than one [ck,φk]. The algorithm will enumerate all possible matches.

Checking the validity of auxiliary application terms is similar. The following
predicate is checked, which states that the resource usage of an auxiliary function
call should not exceed the bound O(ψ).

m∧
i=1

[yi/v]ϕi⇒
(
[sizeg y1..ym/v]ψg ∈ O([size Γ(args)/v]ψ)

)
.

Recall that the above query is undecidable in general, and is checked using an SMT
solver in SynPlexity. An enumerated term is accepted if its refinement implies the
goal refinement ϕ.

Rules for Branching Term. When the algorithm chooses to apply the rule T-If to
synthesize a term of the form if e then t1 else t2 for a given goal 〈{B | ϕ},α〉, there
are three steps to construct sub-goals for sub-terms e, t1, and t2: (1) sharing the
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prod=??1:〈x:{Int | v > 0}→y:{Int | v > 0}→ {Int | v = x ∗ y}, (O(log u))〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T-Abs−−−→ prod=λx.λy.??2:〈{Int | v = x ∗ y, ([1, bu

2c];O(1))〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T-If−−→ prod=λx.λy.if ??3

E-App←−−− x==0:〈{Bool | x = 0}, ([0, bu
2c];O(1))〉

then ??4:〈{Int | v = x ∗ y ∧ x = 0, ([1, bu
2c];O(1))〉

E-App←−−− x:〈{Bool | v = 0}, ([0, bu
2c];O(1))〉

else ??5:〈{Int | v = x ∗ y ∧ x > 0, ([1, bu
2c];O(1))〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
??5

T-If−−→ if ??6
E-App←−−− even x:〈{Bool | x mod 2 = 0}, ([0, bu

2c];O(1))〉
then ??7:〈{Int | v = x ∗ y ∧ x mod 2 = 0, ([1, bu

2c];O(1))〉
E-App←−−− double (prod (div2 x) y)

else ??9:〈{Int | v = x ∗ y ∧ x mod 2 = 1, ([1, bu
2c];O(1))〉

E-App←−−− plus y (double (prod (div2 x) y))

Figure 4.7: Trace of the synthesis of an O(log x) implementation of prod.

recursive-call costs inα, (2) enumerating the condition guard e, and (3) propagating
sub-goals to the two branches t1 and t2. Note that there can be multiple ways to
share α to α1 and α2, and the algorithm will try them one by one (because the
numbers of recursive calls are natural numbers, SynPlexity will just enumerate
all possible ways to split them). Once a sharing α1,α2 is chosen, the algorithm
constructs a goal 〈Bool,α1〉 for the condition guard e. For a candidate e of type
〈{Bool | ϕe},α1〉, the algorithm constructs two sub-goals 〈{B |ϕ},α2〉 along with the
path condition ϕe, and 〈{B | ϕ},α2〉 along with the path condition ¬ϕe for the two
branches t1 and t2, respectively. Applying the rule T-Match is similar to T-If.

Example 4.13. We illustrate in Fig. 4.7 how the algorithm synthesizes theO(log x) imple-
mentation of prod presented in Eqn. (4.2). We omit the type contexts in the example. We
will use “??” to denote intermediate terms being synthesized (i.e., holes in the program).
At the beginning, the type of ??1 (i.e., the term we are synthesizing) is an arrow type with
resource bound O(log u) specified by the input goal. In this example, SynPlexity applies
to the arrow type the rule T-Abs, parameterized according to the first rule in Tab. 4.1. This
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step produces the sub-problem of synthesizing the function body ??2, whose annotation
is ([1, bu

2 c];O(1))—which means that ??2 should contain at most one recursive call to
sub-problems with size bu

2 c.
Next, SynPlexity chooses to fill ??2 with an if-then-else term (by applying the

T-If rules) with three sub-problems: the condition guard ??3, the then branch ??4 and the
else branch ??5. Note that here we share the number of recursive calls [1, u

2 ] as follows:
0 recursive calls in the condition guard, and 1 in the then branch and the else branch.
The left arrow E-App shows how SynPlexity enumerates terms and checks them against
the goal types of sub-problems. For example, to fill ??4, SynPlexity enumerates terms of
type 〈{Int | v = x ∗ y ∧ x = 0, ([1, u

2 ];O(1))〉, which are restricted to contain at most
one recursive call to prod. In Fig. 4.7, SynPlexity has picked the term x to fill ??4. The
refinement type of the variable term x is {Int | v = x ∧ x = 0} where x = 0 is the path
condition. To check that x also satisfies the type of ??4, the algorithm needs to apply rule
E-SubType, and check that, for any v and x, v = x ∧ x = 0 implies v = x ∗ y ∧ x = 0,
and [0, bu

2 c] is approximated by [1, bu
2 c].

After applying another T-If rule for ??5, SynPlexity produces three new sub-problems
??6, ??7, and ??8. When enumerating terms to fill ??7, SynPlexity finds an application
term double (prod (div2 x) y) that satisfies the goal 〈{Int | v = x ∗ y∧ x mod 2 =

0, ([1, bu
2 c];O(1))〉. To check that the size of the problem in the recursive call prod (div2

x) y satisfies the recursive-call cost [1, bu
2 c], the type system first checks the refinement of the

callee. The refinement of the first argument (div2 x) is ϕ1 := v = bx
2c. The refinement

of the second argument y is ϕ2 := v = y. Consequently, the size of the sub-problem
prod (div2 x) y satisfies [1, bu

2 c] because [z/v]ϕ1 ∧ [w/v]ϕ2 =⇒ size z w =

[(size x y)/v]bu
2 c, which can be simplified to z = bx

2c ∧w = y =⇒ z = bx
2c. (Recall

that the size function for prod is size := λz.λw.z.)

Optimization. Algorithm 3 discussed above is based on bidirectional type-guided
synthesis with liquid types (Synquid [PKSL16]). Therefore, liquid abduction and
match abduction, two optimizations used in Synquid, can also be used in SynPlexity.
These two techniques allow one to synthesize the branches of if- and match-terms,
and then use logical abduction to infer the weakest assumption under which the
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Algorithm 3 GenerateI(Γ ,γ,d,m).
Input : Context Γ , goal type γ, depth bound d, match boundm
if t← GenerateE(Γ ,γ,d) then return t
if m > 0 then for s← EnumerateE(Γ ,d,dataType) do

patterns← GeneratePatterns(Γ , TypeOf(s))
γ ′ ← UpdateCost(s,γ)
for i ∈ [1,Size(patterns)] do
ti ← GenerateI(UpdateContext(Γ , s == patterns[i]),γ ′,d,m− 1)

if ti == ⊥ then return ⊥
end
return Match s with |i patterns[i]→ ti

end

for cond← EnumerateE(Γ ,d, Bool) do
γ ′ ← UpdateCost(s,γ)
tT ← GenerateI(UpdateContext(Γ , cond),γ ′,d,m)
tF ← GenerateI(UpdateContext(Γ ,¬cond),γ ′,d,m)
if tT 6= ⊥∧ tF 6= ⊥ then return If cond then tT else tF

end
return ⊥

branch fulfills the goal type.
The algorithm is sound because it only enumerates well-typed terms.

Theorem 4.14 (Soundness of the synthesis algorithm). Given a goal type 〈τ,O(ψ)〉
and an environment Γ , if a term fix f.λx1..λxn.t is synthesized by SynPlexity, then the
complexity of f is bounded by ψ.

4.6 Extensions to the SynPlexity Type System

In this section, we introduce two extensions to the SynPlexity type system.

Recurrence Relations with Correlated Sizes

The type system shown in §4.3 only tracks sub-problems with independent sizes.
For example, consider the recurrence relation T(u) = T(l) + T(r) + O(1), where
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the variables l and r are correlated by the constraint l + r < u. This relation is
needed to reason about programs that manipulate binary trees or binary heaps,
where l and r represent the sizes of the two children. To support such a recurrence
relation, we extend SynPlexity’s type system with recursive-call costs of the form
[1, l], [1, u − 1 − l], where l is a free variable. When correlated recurrence relations
are present, the synthesis algorithm will: (1) match the first enumerated recursive-
call term to [1, l], and instantiate the size lwith s, where s is the size of the recursive-
call term (s should be smaller than the size u of the top-level function); and (2) use
the size s of the recursive-call term computed in step 1 to constrain the algorithm
to enumerate only recursive-call terms of sizes at most u − 1 − s.

Synthesis of Auxiliary Functions

Most of the existing type-directed approaches require the input to the problem
to contain all needed auxiliary functions. With SynPlexity, some of the auxiliary
functions needed to solve synthesis problems with resource annotations can be
synthesized automatically.

For example, consider the problem prod described in §4.2. In this problem,
we observe that one of the provided auxiliary functions, div2, strongly resembles
one of the elements of the recurrence relation, T(u) 6 T(bu

2c) + O(1), needed to
synthesize a program with the desired resource usage. In particular, we know that
one needs an auxiliary function that can take an input of size u and produce an
output of size bu

2c. In this example, the required auxiliary function div2 merely
needs to divide the input by 2 (and round down), but in certain cases it might need
a more precise refinement type than merely changing the size of the input. For
example, the auxiliary function split used by merge sort needs to split the input
list xs into two lists v1 and v2 that are half the length of the input and such that
elems(v1) ] elems(v2) = elems(xs). However, all we know from the refinement is
that the output lists must be half the length of the original list.

Although we do not know what this auxiliary function should do exactly, we
can use the size constraint appearing in the recurrence relation to define part of
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the refinement type we want the auxiliary function to satisfy. SynPlexity builds
on this idea and incorporates an (optionally enabled) algorithm, SynAuxRef, that
while trying to synthesize a solution to the top-level synthesis problem also tries in
parallel to synthesize auxiliary functions that can create sub-problems with the size
constraints needed in the recurrence relation. To address the problem mentioned
above—i.e., that we do not know the exact refinement type the auxiliary function
should satisfy—SynAuxRef enumerates auxiliary refinements, which are possible
specifications that the auxiliary function aux we are trying to synthesize might
satisfy.

SynPlexity with Higher-Order Functions

Recall that the type system of SynPlexity shown in §4.3 does not support higher-
order functions. That is, no argument of a function is allowed to be of an arrow
type. Inferring the resource usages of higher-order functions is challenging for two
reasons. First, the resource usages of function arguments g can be unknown, in
which case the resource usages of applications of g will also be unknown. Second,
the behavior of function arguments g can be unbounded. Hence, the resource
usages of nested applications f(g(...), ...) can also be unbounded when the resource
usage of f grows along with its arguments.

For example, the following program is a higher-order function. It takes as input
a function argument g and an integer-list argument xs, and constructs a new list
as output by applying an auxiliary function square and the function argument
g to each element in xs. When the resource usage of g is unknown, the resource
usage of the application (g x) is also unknown. Also, suppose we assume that the
resource usage of square is linear in its argument. In that case, the resource usage
of the application square (g x) is unbounded because the value of its argument



141

(g x) is unbounded.

map_square = λg.λxs. match xs with

Nil → Nil

Cons x xt → Cons (square (g x)) (map_square g xt)

Although SynPlexity does not support higher-order functions in general, we can
extend it to support programs with higher-order functions in practice by introducing
four restrictions on target programs. First, we assume that the resource usage
of each function argument g is a constant, i.e., g : 〈τ,O(1)〉. Second, function
arguments in recursive calls in the synthesized programs are the same as the top-
level function’s function arguments. For example, in the body of a higher-order
function fix f.λgλxλy.t, all recursive application terms must be of form f(g, _, _)
where each _ can be any well-typed term. Third, we assume that the behavior
of function arguments does not affect the asymptotic resource usage of higher-
order functions. To satisfy this restriction, we want to avoid nested application
terms where the outer functions have non-constant resource usage and the value
of arguments of the outer function depends on some function arguments. Finally,
function arguments cannot appear in size functions.

In the rest of this section, we first introduce the extensions to SynPlexity’s type
system and then formally state the restrictions we introduced.

Extended Syntax and Types. The extended syntax of the surface language contains
two new rules: 1) an E-term can be a function term, which means that arguments
of application terms can be function terms, and 2) a function term can be a lambda
term.

E-term e ::= f Function term f ::= λx.t

The extended type system contains a new kind of arrow type

τ ::= x1 :γ1→ . . .→xn :γn→y : τy,

which extends standard arrow types by allowing arguments to be annotated types.
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The idea of the extended arrow types is that arguments can be of function types
with annotated resource usage. Recall that with the first restriction, we assume
that all recurrence annotations in the higher-order arrow type are O(1). That is,
the resource usages of function arguments are always constant.

Restriction on the Synthesis algorithm. With the extended type system, we also modify
the synthesis algorithm to prune E-terms that breaks the second or third restriction
mentioned above.

To support the second restriction (i.e., that we need to call the same function
arguments in recursive calls), the synthesis algorithm first stores the function
arguments of the top-level functions. Later, when a recursive call is enumerated,
the synthesizer checks whether it calls the same function arguments, and rejects
the candidate if it does not.

To support the third restriction (i.e., that the behavior of function arguments
should not affect the resource usage), the synthesis algorithm avoids enumerating
nested application terms where the resource usage of the outer application depends
on the value of an inner application term that calls a function argument.

4.7 Evaluation

In this section, we evaluate the effectiveness and performance of SynPlexity, and
compare it to existing tools.3 We implemented SynPlexity in Haskell on top of
Synquid by extending its type system with recurrence annotations as presented in
§4.3.

Comparison to Prior Tools

We compared SynPlexity against two related tools: Synquid [PKSL16] and ReSyn
[KWPH19], which are also based on refinement types.

3All the experiments were performed on an Intel Core i7 4.00GHz CPU, with 8GB of RAM. We
used version 4.8.9 of Z3. The timeout for each benchmark was 10 minutes.
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Benchmarks. We considered a total of 77 synthesis problems: 56 synthesis problems
from ReSyn (each benchmark specifies a concrete linear-time resource annotation),
16 synthesis problems from Synquid (which do not include resource annotations)
that are not included in ReSyn, and 5 new synthesis problems involving non-linear
resource annotations. In these synthesis problems, synthesis specifications and
auxiliary functions are all given as refinement types. For 3 of the new benchmarks,
the auxiliary function required to split the input into smaller ones is not given—i.e.,
the synthesizer needs to identify it automatically.

The three solvers (SynPlexity, Synquid, and ReSyn) have different features, and
hence not all synthesis problem can be encoded as synthesis benchmarks for a single
solver. In the rest of this section, we describe what benchmarks we considered for
each tool, and how we modified the benchmarks when needed.

Synquid: Synquid does not support resource bounds, so we encoded 77 synthesis
problems as Synquid benchmarks by dropping the resource annotations. Synquid
returns the first program that meet the synthesis specification, and cannot provide
any guarantees about the resource usage of the returned program. Synquid can
solve 75 benchmarks, and takes on average 3.3s. For 10 benchmarks Synquid
synthesizes a non-optimal program—i.e., there exists another program with better
concrete resource usage. For example, on the ReSyn-triple-2 benchmark (where
the input is a list xs), Synquid found a solution with resource usage O(|xs|2), while
both SynPlexity and ReSyn can synthesize a more efficient implementation with
resource usageO(|xs|). The two benchmarks that Synquid failed to solve include the
new benchmark SynPlexity-merge-sort’. In this benchmark, the auxiliary function
required to break the input into smaller inputs is not given, without which the sizes
of solutions become much larger. Therefore Synquid times out.

ReSyn: We ran ReSyn on the 56 ReSyn benchmarks with the corresponding concrete
resource bounds. We could not encode 16 problems becauseReSyn does not support
non-linear resources bounds—e.g., the bound log |y| in the AVL-insert Synquid
benchmark. ReSyn solved all 56 benchmarks with an average running time of 18.3s.

SynPlexity: We manually added resource usages and resource bounds to existing
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problems to encode them for SynPlexity. For Synquid benchmarks without concrete
resource bounds, we chose well-known time complexities as the bounds, e.g., we
added the resource boundO(u log u) to the Sort-merge-sort problem. For the ReSyn
benchmarks, we translated the concrete resource usage and resource bounds to the
corresponding asymptotic ones—e.g., for the ReSyn-common’ benchmark with the
concrete resource bound |ys|+ |zs|, we constructed a SynPlexity variant with the
asymptotic boundO(u) and a size function λys.λzs.|ys|+ |zs|. We could not encode
3 synthesis problems as SynPlexity benchmarks: two of them involved higher-order
functions that does not satisfy the assumptions introduced in §4.6, and the other
one is with exponential resource-usage bound O(2u) (the Tree-create-balanced
problem from Synquid).

SynPlexity solved 73 benchmarks with an average running time of 8.1s. Unlike
Synquid, SynPlexity guarantees that the synthesized program satisfies the given
resource bounds. For 10 benchmarks, SynPlexity found programs that had better
resource usage than those synthesized by Synquid. Furthermore, SynPlexity can
encode and solve 9 problems that ReSyn could not solve because the resource
bounds involve logarithms. However, SynPlexity cannot encode and solve 3 bench-
marks that involve higher-order functions. SynPlexity could solve 3 problems that
required synthesizing both the main function (e.g., SynPlexity-merge-sort) and
its auxiliary function (e.g., the function splitting a given list into two balanced
partitions). No other tool could solve the SynPlexity-merge-sort’ benchmark.

Finding. SynPlexity can express and solve 68/77 benchmarks. SynPlexity has
comparable performance to existing tools, and can synthesize programs with
resource bounds that are not supported by prior tools.

Pruning the Search Space with Annotated Types

SynPlexity uses recurrence annotations to guide the search and avoids enumerating
terms that are guaranteed to not match the specified complexity. We compared the
numbers of E-terms enumerated by SynPlexity and Synquid for 56 benchmark on
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which both tool produced same solutions. Synquid always enumerated at least as
many E-terms as SynPlexity, and SynPlexity enumerated strictly fewer E-terms for
26/56 benchmarks. For these 26 benchmarks, SynPlexity can on average prune the
search space by 6.2%. For example, in one case (BST-delete) SynPlexity enumerated
2,059 E-terms, while Synquid enumerated 2,202.

Finding. On average, SynPlexity reduces the size of the search space by 6.2% for
approximately half of the benchmarks.

4.8 Summary

In this chapter, we introduce the formalization of program-synthesis problems with
asymptotic resource usage and a type-guided algorithm of solving the problems.
We implemented the algorithm in a tool named SynPlexity. The experiment shows
that SynPlexity can synthesize problems with complexity that cannot be expressed
by prior work, and guided the search for divide-and-conque solutions.
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Table 4.2: Evaluation results of Synquid, ReSyn, and SynPlexity on benchmarks that
can be encoded as SynPlexity benchmarks. T denotes running time. B denotes the
given resource bounds. TO denotes a timeout. The benchmarks cannot be encoded
by some tools are shown as -. Rec. rel. represents the recurrence-relation pattern
SynPlexity chose to use. C=C-finite sequence. M=Master Theorem. A=Akra-Bazzi
method. T=the tree recurrence we introduced in §4.6. N=non-recursive.

Problem Synquid ReSyn SynPlexity Rec.
T(sec) B T(sec) O(B) T(sec) rel.

List is empty 0.64 0 0.65 1 0.64 N
is member 0.92 |xs| 0.89 |xs| 0.84 C

duplicate each element 0.87 |xs| 1.63 |xs| 0.93 C
replicate 1.02 n 8.31 n 1.30 C

append two lists 0.94 |xs| 3.70 |xs| 1.95 C
concatenate list of lists 0.93 - - |xss|2 0.97 C

take firstn elements 1.03 n 7.75 n 1.31 C
drop firstn elements 0.89 n 40.82 n 11.51 C

delete value 0.90 |xs| 2.04 |xs| 1.30 C
zip 0.91 |xs| 2.44 |xs| 1.22 C

i-th element 0.70 |xs| 1.01 |xs| 0.97 C
index of element 0.97 |xs| 1.76 |xs| 1.29 C

insert at end 1.06 |xs| 1.65 |xs| 1.04 C
reverse 1.10 |xs| 1.49 |xs| 1.09 C

Unique insert 1.01 |xs| 2.24 |xs| 2.89 C
list delete 0.81 |xs| 1.61 |xs| 2.13 C

remove duplicates 0.74 - - |xs|2 3.68 C
compress 2.62 |xs| 10.25 |xs| 7.91 C

integer range 4.83 size 206.19 size 7.42 C
Strictly insert 1.24 |xs| 4.92 |xs| 1.49 C

sorted list delete 0.75 |xs| 1.92 |xs| 1.24 C
intersect 4.45 |xs|+ |ys| 7.17 |xs|+ |ys| 8.91 C

Sorting insert (sorted) 0.90 |xs| 3.92 |xs| 2.16 C
insertion sort 0.73 - - |xs|2 6.03 C

extract minimum 2.45 |xs| 28.66 |xs| 10.09 C
quick sort 6.76 - - |xs|2 39.29 C

selection sort 1.84 - - |xs|2 3.42 C
balanced split 4.09 |xs| 28.59 |xs| 9.59 C

merge 7.14 - - |xs|+ |ys| 37.71 C
merge sort 6.89 - - |xs| log |xs| 69.63 A
partition 5.77 |xs| 40.55 |xs| 10.77 C

append with pivot 1.33 - - |xs| 1.96 C
Tree is member 0.97 2|t| 8.88 |t| 5.47 T

node count 0.84 2|t| 8.94 |t| 2.94 T
preorder 1.07 2|t| 7.42 |t| 5.69 T
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Table 4.3: Continuation of Table 4.2.
Problem Synquid ReSyn SynPlexity Rec.

T(sec) B T(sec) O(B) T(sec) rel.
BST is member 0.75 2|t| 1.83 |t| 1.54 T

insert 2.14 |t| 12.87 |t| 6.56 T
delete 9.89 2|t| 98.04 |t| 24.20 T

BST sort 4.23 3|t| 54.47 |t| 6.28 T
Binary is member 1.45 2|t| 0.97 |t| 2.09 T
Heap insert 2.01 |t| 11.89 |t| 4.02 T

1-element constructor 0.90 1 2.11 1 1.29 N
2-element constructor 1.15 2 2.63 1 1.04 N
3-element constructor 5.34 3 62.69 1 5.06 N

AVL rotate left 9.84 - - 1 9.28 N
rotate right 28.67 - - 1 30.44 N

balance 3.95 - - 1 4.22 N
insert 3.92 - - log |t| 13.36 M
delete 7.99 - - log |t| 13.82 M

extract minimum 8.22 - - log |t| 12.26 M
RBT balance left 12.63 - - 1 11.15 N

balance right 14.81 - - 1 15.70 N
insert 3.00 - - log |t| 9.68 M

User make address book 6.50 - - |adds| 4.89 C
merge address books 1.50 - - 1 1.64 N

HOF map 0.03 |xs| 0.33 |xs| 0.58 C
zip with function 0.07 |xs| 0.82 |xs| 1.11 C

foldr 0.10 |xs| 1.88 |xs| 2.57 C
length using fold 0.03 |xs| 0.67 |xs| 0.56 N

append using fold 0.04 |xs| 0.34 |xs| 0.72 N
ReSyn only triple-1 1.01 2|xs| 2.93 |xs| 1.75 C

triple-2 1.01 2|xs| 6.16 |xs| 1.45 C
concat list of lists 1.30 |xss| 9.68 |xss| 1.79 C

common 2.57 |ys|+ |zs| 40.77 |ys|+ |zs| 57.55 C
list difference 1.36 |ys|+ |zs| 419.23 |ys|+ |zs| 41.88 C

insert 1.18 numgt(x, xs) 48.82 numgt(x, xs) 3.76 C
range TO hi− lo 128.8 hi− lo 7.63 C

compare 1.02 |xs|+ |ys| 3.78 |xs|+ |ys| 8.32 C
SynPlexity only binary search 1.53 - - log |xs| 5.20 M

product 1.09 - - log x 1.37 M
binary search’ 1.64 - - log |xs| 24.68 M

product’ 0.98 - - log x 14.13 M
merge sort’ TO - - |xs| log |xs| 75.73 A
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Chapter 5

Related Work

In this chapter, we compare the work described in this dissertation to related work.

Qualitative Synthesis

Existing program synthesizers fall into three categories: (i) enumeration solvers,
which typically output the smallest program [Sin], (ii) symbolic solvers, which
reduce the synthesis problem to a constraint-solving problem and output whatever
program is produced by the constraint solver [SL13], (iii) probabilistic synthe-
sizers, which randomly search the space for a solution and are typically unpre-
dictable [SSA16]. Since the introduction of the SyGuS format [ABJ+13], these
techniques have been used to build several SyGuS solvers that have competed
in SyGuS competitions [AFSSL16b]. The most effective ones, which are used in
the chapter about QSyGuS, are ESolver and EUSolver [Sin] (enumeration), and
CVC4 [BCD+11] (symbolic).

Prior work [FN21, ARU17c] on synthesizing divide-and-conquer programs are
focusing on finding solution equivalent to some reference programs. However, they
are not resource-aware approaches.
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Quantitative synthesis

Domain-specific synthesizers typically employ hard-coded ranking functions that
guide the search towards a “preferable” program [PG15], but these functions are
typically hard to write and are decoupled from the functional specification. Unlike
QSyGuS, these synthesizers allow arbitrary ranking functions to be expressed in
general-purpose languages, but typically only support limited grammars for synthe-
sis. Moreover, in many practical applications the ranking functions are very simple.
For example, the popular spreadsheet-formula synthesizer FlashFill [Gul11] uses a
ranking function to prefer small programs with few constants. This type of objective
is expressible in QSyGuS framework.

The Sketch synthesizer supports optimization objectives over variables in
sketched programs [SGSL13]. This work differs from QSyGuS in that sketches
are a different specification mechanism from SyGuS. In Sketch, the search space is
encoded as a program with holes to facilitate synthesis by constraint solving. Trans-
lating SyGuS problems into sketches is non-trivial and results in poor performance.

The work closest to QSyGuS is Synapse [BTGC16], which combines sketching
with an approach similar to QSyGuS. For the same reasons as for Sketch, Synapse
differs from QSyGuS because it proposes a different search-space mechanism. How-
ever, there are a few analogies related ideas in QSyGuS and Synapse that are worth
explaining in detail. Synapse supports syntactic-cost functions that are defined
using a decidable theory, and separately from the sketch search space. Synthesis is
done using an iterative search where sketches—i.e., set of partial programs with
holes—of increasing sizes are given to the synthesizer. At a high level, the inter-
mediate sketches are related to the notion in QSyGuS of reduced grammars—i.e.,
they accept solution of weight less than a given constant. However, while QuaSi
generates reduced grammars automatically for a well-defined family of semirings,
Synapse requires the user to provide a function for generating the intermediate
sketches. Moreover, since Synapse requires cost functions that are defined using
a decidable theory, it would not support certain families of costs that QSyGuS
supports—e.g., the probabilistic semiring.
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Koukoutos et al. [KRKK17] have proposed the use of probabilistic tree grammars
to guide the search of enumerative synthesizers on applications outside of SyGuS.
Their algorithm enumerates all terms accepted by the grammar in decreasing
probability using a variant of the search algorithm A∗ and requires the grammar
to not contain transitions of weight 1 to avoid getting stuck. Probabilistic tree
grammars are a special case of the QuaSi algorithm with limitations of what weights
can appear in the grammar. Moreover, the QuaSi algorithm does not require
implementing a new solver when changing the cost semiring.

SyGuS

The SyGuS formalism was introduced as a unifying framework to express several
synthesis problems [ABJ+13]. Caulfield et al. [CRST15] proved that it is unde-
cidable to determine whether a given SyGuS problem is realizable. Despite this
negative result, there are several SyGuS solvers that compete in yearly SyGuS compe-
titions [AFSSL16b] and can efficiently produce solutions to SyGuS problems when
a solution exists. Existing SyGuS synthesizers fall into three categories: (i) Enu-
meration solvers enumerate programs with respect to a given total order [Sin].
If the given problem is unrealizable, these solvers typically only terminate if the
language of the grammar is finite or contains finitely many functionally distinct
programs. While in principle certain enumeration solvers can prune infinite por-
tions of the search space, none of these solvers could prove unrealizability for any
of the benchmarks considered in the evaluation of Nope and Nay. (ii) Symbolic
solvers reduce the synthesis problem to a constraint-solving problem [BCD+11].
These solvers cannot reason about grammars that restrict allowed terms, and resort
to enumeration whenever the candidate solution produced by the constraint solver
is not in the restricted search space. Hence, they also cannot prove unrealizability.
(iii) Probabilistic synthesizers randomly search the search space, and are typically
unpredictable [SSA16], providing no guarantees in terms of unrealizability.
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Synthesis as Reachability

CETI [NWKF17] introduces a technique for encoding template-based synthesis
problems as reachability problems. The CETI encoding only applies to the specific
setting in which (i) the search space is described by an imperative program with
a finite number of holes—i.e., the values that the synthesizer has to discover—and
(ii) the specification is given as a finite number of input-output test cases with
which the target program should agree. Because the number of holes is finite,
and all holes correspond to values (and not terms), the reduction to a reachability
problem only involves making the holes global variables in the program (and no
more elaborate transformations).

In contrast, our reduction technique in Nope handles search spaces that are
described by a grammar, which in general consist of an infinite set of terms (not
just values). Due to this added complexity, our encoding used in Nope has to
account for (i) the semantics of the productions in the grammar, and (ii) the use
of non-determinism to encode the choice of grammar productions. Our encoding
creates one expression-evaluation computation for each of the example inputs, and
threads these computations through the program so that each expression-evaluation
computation makes use of the same set of non-deterministic choices.

Using the input-threading, our technique used in Nope can handle specifications
that contain nested calls of the synthesized program (e.g., f(f(x)) = x).

The input-threading technique builds a product program that perform multi-
ple executions of the same function as done in relational program verification
[BCK11]. Alternatively, a different encoding could use multiple function invoca-
tions on individual inputs and require the verifier to thread the same bit-stream
for all input evaluations. In general, verifiers perform much better on product
programs [BCK11], which motivate the choice of encoding used in Nope.

Unrealizability in Program Synthesis

For certain synthesis problems—e.g., reactive synthesis [Blo15]—the realizability
problem is decidable. The SyGuS framework is orthogonal to such problems, and it
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is undecidable to check whether a given SyGuS problem is realizable.
Mechtaev et al. [MGCR18] propose to use a variant of SyGuS to efficiently prune

irrelevant paths in a symbolic-execution engine. In their approach, for each path π
in the program, a synthesis problem pπ is generated so that if pπ is unrealizable, the
path π is infeasible. The synthesis problems generated by Mechtaev et al. (which
are not directly expressible in SyGuS) are decidable because the search space is
defined by a finite set of templates, and the synthesis problem can be encoded by
an SMT formula. To the best of our knowledge, our technique is the first one that
can check unrealizability of general SyGuS problems in which the search space is
an infinite set of functionally distinct terms.

Abstractions in Program Synthesis

SYNGAR [WDS18] uses predicate abstraction to prune the search space of a
synthesis-from-examples problem. Given an input example i and a regular-tree
grammar A representing the search space, SYNGAR builds a new grammar Aα
in which each nonterminal is a pair (q,a), where q is a nonterminal of A and a
is a predicate of a predicate-abstraction domain α. Any term that can be derived
from (q,a) is guaranteed to produce an output satisfying the predicate a when fed
the input i. Aα is constructed iteratively by adding nonterminals in a bottom-up
fashion; it is guaranteed to terminate because the set α is finite. SYNGAR can be
viewed as a special case of our framework of Nay in which the set of values nG(X)

is based on predicate abstraction (see §3.4). SYNGAR’s approach is tied to finite
abstract domains, while the equational approach used in Nay extends to infinite
domains—e.g., semi-linear sets—because it does not specify how the equations
must be solved.

Resource-Bound Analysis

Rather than determining whether a given program satisfies a specification, a syn-
thesizer determines whether there exists a program that inhabits a given specifica-
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tion. The branch of verification that we draw upon for resource-based synthesis is
resource-bound analysis [Weg75].

Within the literature on automated resource-bound analysis, there are methods
that extract and solve recurrence relations for imperative code [AAGP11, FM17,
BCKR20, KCBR18]. However, these methods are unlike the type system presented
in Chapter 4 because they extract concrete complexity bounds as recurrence rela-
tions, and then solve the recurrences to find a concrete upper bound on resource
usage. The dominant terms of the resulting concrete bounds can then be used to
state a big-O complexity bound. In contrast, we want to synthesize programs with
respect to a big-O complexity directly, which is more similar to the manual rea-
soning of [Ebe17, GCP18]. Thus, if we were to use these techniques in SynPlexity,
the first step in the SynPlexity synthesis algorithm would be to pick a concrete
complexity function given a big-O complexity, and then reverse the verification
problem with regards to that concrete complexity. However, for any big-O com-
plexity, there are an infinite number of functions that satisfy that complexity, which
presents a significant challenge at the outset. Our design choice in SynPlexity also
has some drawbacks. As noted in [GCP18], reasoning compositionally with big-O
complexity is challenging due to the hidden quantifier structure of big-O notation.
Thus, to maintain soundness, the SynPlexity type system has to sacrifice precision
and generality in some places. For example, when a function has multiple paths,
the SynPlexity type system over-approximates by choosing the largest complexity
among all the paths.

Another set of methods to generate resource bounds are type-based [HAH11,
HAH12, WWC17, KH20]. As we discussed in Chapter 4, the complexities generated
by these methods are concrete functions and not expressed with big-O notation,
although [WWC17] is sometimes able to pattern match a case of the Master Theo-
rem. These type systems differ from ours in a few ways. The AARA line of research
[HAH11, HAH12, KH20] is able to assign amortized complexity to programs, but
is not able to generate logarithmic bounds. [WWC17] is also able to perform amor-
tized analysis; however, the technique is not fully automated, and instead requires
the user to provide type annotations on terms, which are then checked by the type
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system.

Type- and Resource-Aware Synthesis

The SynPlexity implementation is built on top of Synquid [PKSL16] a type-directed
synthesis tool based on refinement types and polymorphism. The work that most
closely resembles ours is ReSyn [KWPH19]. As in SynPlexity, they combine the
type-directed synthesizer Synquid with a type system that is able to assign com-
plexity bounds to functional programs. The type system used in ReSyn is based
on one originally used in the context of verification [HAH12]. That work uses a
sophisticated type system to assign amortized resource-usage bounds to a given
program. The type system of ReSyn differs from the one presented in §4.3 in a few
significant ways.

As highlighted earlier, the technique of ReSyn for automatically inferring bounds
on recursive functions is based on amortized analysis, and restricted to linear
bounds, whereas SynPlexity system is able to synthesize complexities of the form
O(na logb n+ c).

Another difference is that ReSyn synthesizes programs with a concrete complex-
ity bound. This approach has advantages and disadvantages. For instance, it places
an extra burden on the human to provide the correct bound with precise coefficient.
On the other hand, the user might want an implementation that has a complexity
with a small coefficient, whereas SynPlexity system provides no guarantee that
the complexity of an implementation will have a small coefficient in the dominant
term: SynPlexity only guarantees asymptotic behavior.

ReSyn can synthesize programs with higher-order functions, which are sup-
ported only in a restricted manner by SynPlexity. To handle higher-order functions,
ReSyn attaches resource units to types, which gives it resource polymorphism. More-
over, costs of inputs with function types can be written generally as polymorphic
types (i.e., costs can be polymorphic with respect to the size of the specific input
types). SynPlexity does not have asymptotic resource polymorphism because it cannot
directly compose unknown big-O functions (i.e., the complexity of higher-order
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inputs). We envision that with carefully crafted restrictions on the resource an-
notations of higher-order functions, SynPlexity could handle synthesis problems
involving such functions, e.g., assuming that the complexity of input functions
is known and the refinements of input functions are precise enough. Detailed
discussion about these restrictions can be found in §4.6. Because big-O functions
cannot be directly composed, developing a more general extension to SynPlexity
that supports higher-order functions is a challenging direction for future work.
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Chapter 6

Future Work

This dissertation demonstrates that quantitative objectives and proof of unrealiz-
ability are effective guarantees for making program synthesis more reliable and
predictable. However, our work does not include all possible guarantees in program
synthesis. This final chapter identifies some other promising guarantees in program
synthesis for future work.

6.1 More about Nope

Solving QSyGuS with Nope

As described in §3.3, we can use Nope to show that a solution to some QSyGuS prob-
lem is optimal by combining QuaSi and Nope. Recall that QuaSi will keep refining
the cost of the current solution by solving SyGuS sub-problems with restricted
grammars. And in the last iteration of the cost refinement, the SyGuS sub-problem
is unrealizable only if the current QSyGuS solution is optimal. However, in such a
combined technique, the SyGuS sub-problem can have very large grammars, e.g.,
with more than 200 production rules, which is challenging for verification tools
like SeaHorn. To address this large-grammar issue, we propose a new reduction
encoding in Nope such that we can avoid grammars with large sizes and solve
QSyGuS problem directly with Nope.
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The high-level idea is that we add a new global variable to the encoded program
to record the cost of productions applied so far. Every time we enter an if-statement
body in the encoded program, we add to the cost variable the weight of the corre-
sponding production. Finally, when the encoded program returns, the cost variable
will store the overall weight of the evaluated expression.

Symbolic Constants

In most of SyGuS benchmarks, there are only two constants 0 and 1 appearing in
the grammars, Other constants are presented as the sum of multiple 1s, which
enlarge the size of solutions and slow down the enumerating technique used in
enumerative solvers [ABJ+13, ARU17a]. One promising optimization of Nope to
deal with constants is using symbolic constants in grammars. Using symbolic
constants in program synthesis has been recently studied in CEGIS[T] [ADK+18]
for counter-example-guided synthesis. What we envision differs from CEGIS[T]
because it involves a new algorithm to determine the allowed ranges of symbolic
constants in a given grammar and thus we can use symbolic constants in SyGuS
problems with non-trivial grammars while with only CEGIS[T] we cannot.

The high-level idea is that for each nonterminal N, we first decide the range
φconst of constants derived from it and then replace the concrete constant in
the encoded program by a symbolic variable constant_N and add an assertion
assert φconst(constant_N) in the if-statement body corresponds to the constant
production.

The correctness of the symbolic constant can be shown by a bijection map
to the original constant encoding. Denote by P the encoded program without
using symbolic constants and Psym the encoded program with symbolic constants.
The leftward direction shows that for any expression e evaluated in P, e can also
be evaluated in Psym, which is trivial. The other direction shows that for each
expression e evaluated in Psym there exists an expression e ′ in P such that JeK = Je ′K.
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Imperative Programs

The technique used in Nope is not restricted to the SyGuS framework. That is, it
should be possible to generalize the technique used in Nope to imperative programs.
Imperative programs have more expressiveness than expressions produced by
regular tree grammars. The synthesis of imperative programs has been studied
using a deductive approach [SI99]. Our approach based on Nope cannot only
synthesize a correct solution but also has the ability to answer unrealizable and to
incorporate syntactic quantitative objectives.

The main challenge when using the encoding presented in Nope to encode
imperative synthesis problems is the assignment statement. For SyGuS problems,
we only care about the evaluated values of terms while, for imperative program
synthesis, we need to also consider program states, e.g., when we encode a rule
r : S→ Concate(Assign(x,E),S), the evaluation of Ewill influence the evaluation
of S.

To deal with program states, we evaluate a sub-term t to a pair (evalt,σ) where
evalt is the evaluated value of t, similar to what happens in Nope, and σ is a store
of values assigned to variables. Recall that in the original Nope, we use global
variables g_i_j only to store the evaluated values of sub-terms. In the encoding for
imperative programs, we would use additional global variables to record program
states σ, i.e., for each variable xwe add a new global variable g_x_i_j, pass its value
to sub-terms via function arguments and update it when a function call returns.
For example, with only one input example, we encode the rule r as

funcE(v)
τ temp_x = g
g = funcS(temp_x)

The new encoding is promising because in the encoding used in Nope we
evaluate the whole tree using a postorder traversals with which we can make
sure that early statements will be evaluated first and program states can be passed
in sequential order.
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Abstraction in Solving Synthesis Problems

In the algorithm of Nope and Nay, to synthesize solutions and prove unrealizability,
we use concrete values to build the example set E and evaluate candidate solutions.
One possible generalization of this approach is to use abstraction instead of concrete
values. Using abstraction in solving synthesis problems differs from using concrete
values in two ways: first, we can have a symbolic example set in the CEGIS loop,
and we evaluate abstractly sub-terms, instead of concretely. Using abstraction
in program synthesis has been studied for synthesis problems with examples
[WDS18].

6.2 Complex Quantitative Objectives

Semantic Quantitative Objectives

When we know a program-synthesis problem is unrealizable, a question naturally
arises: how much of the correct specification can we satisfy on a best-effort basis? With
such objectives, we can find a solution to satisfy, for example, as many input-output
examples as possible. Such quantitative objectives can also be used to train a neural
network. Another example application is approximate synthesis [BTCG15], which
allow us to find an approximate solution, instead of finding an exact solution that
fulfills the correct specification within a given amount of solver solving time. We
now describe a possible formalization of semantic quantitative objectives.

A natural way to formalize a synthesis problem with semantic quantitative
objectives is that, instead of only one correct specification, we allow a program-
synthesis problem to contain a set of weight-specification pairs (ϕi,wi). We define
the semantic weight of a solution e as

∑
i[ϕi(e) = true]wi. Similar to the syntactic

quantitative objectives we presented in Chapter 2, a semantic objective could be
specified as a range of allowed weights of solutions, or a requirement of optimizing
the solutions’ weight.

Some possible algorithms to solve synthesis problems with semantic quantitative
objectives include
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• Iteratively refining costs by construct sub-problems that produce terms with
better costs. For example, if a current solution satisfy all but one specification
clause, to refine it we need to solve a synthesis problem with specification as
the conjunction of all original specification clauses.

• Encoding the whole problem as a MAX-SAT problem and solving it meaning
a call to a MAX-SAT solver.

Multi-Objective Synthesis Framework

Specifications associated with semantic quantitative objectives are soft and
ambiguous—there can be multiple solutions satisfying different parts of the speci-
fications. We propose to allow multiple objectives to empower users to mitigate
this problem.

Example 6.1. Consider a scenario where an end-user is using a synthesizer to write a
regular expression [PHXD19]. The user provides a set of positive examples {12:14, 06:4,
07:03} and a set of negative examples {07:4, 7:04} for synthesizing a time-format expression
accepting strings of the form XX:YY. Here, the user has made a mistake and the string 06:4
is a false positive.

If we assign weight 1 to each positive example and ask for a solution with weight at least
2 (i.e., the user can make one mistake), there will be two possible solutions e1 := [0-9](2) :
[0-9](2) which satisfies only two positive examples, and e2 := ([0-9](2) : [0-9](2)) | (06 : 4)
which satisfies all three positive examples. The syntactic constraint |e∗| 6 15 will rule out
the overfitted solution e2.

One might hope to develop a multi-objective synthesis framework that supports
1) soft specifications as semantic quantitative objectives, 2) hard specifications,
and 3) syntactic quantitative objectives. Such a framework might use type-guided
synthesis with refinement types [KWPH19], which can contain both syntactic
and semantic information. It might also take a compositional approach to solve
individual objectives separately and combine the obtained solutions.
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User-Friendly Specification Language

Sometimes users know the main functionality of the expected program, but find it
hard to write a formal specification covering all the corner cases. We plan to allow
the user to provide a partial specification that constrains only parts of the inputs.

Example 6.2. A user wants to synthesize the absolute-value function, but writing the
full logical specification ϕabs = (x > 0 → f(x) = x) ∧ (x < 0 → f(x) = −x) is hard
for an end-user. One might allow the user to provide a partial specification "f(x) = x on
infinite number of inputs" along with input-output examples f(−1) = 1, f(−2) = 2 and a
syntactic objective that minimizes the size of the solution. This specification is enough for
synthesizing abs, and is composed of many natural easy-to-write individual objectives.

In Regel [CWY+19], users can specify synthesis problems with a mixture of
natural language and examples, which are then solved with a combination of
learning and symbolic techniques. One might attack the problem in Ex. 6.2 using a
similar approach.
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