
Solving Program Sketches with

Large Integer Values

Rong Pan1, Qinheping Hu2, Rishabh Singh3, and Loris D’Antoni2

1 The University of Texas at Austin, Austin, USA
2 University of Wisconsin-Madison, Madison, USA

3Google, USA

Abstract. Program sketching is a program synthesis paradigm in which
the programmer provides a partial program with holes and assertions.
The goal of the synthesizer is to automatically find integer values for
the holes so that the resulting program satisfies the assertions. The most
popular sketching tool, Sketch, can efficiently solve complex program
sketches, but uses an integer encoding that often performs poorly if the
sketched program manipulates large integer values. In this paper, we
propose a new solving technique that allows Sketch to handle large in-
teger values while retaining its integer encoding. Our technique uses a
result from number theory, the Chinese Remainder Theorem, to rewrite
program sketches to only track the remainders of certain variable values
with respect to several prime numbers. We prove that our transformation
is sound and the encoding of the resulting programs are exponentially
more succinct than existing Sketch encodings. We evaluate our tech-
nique on a variety of benchmarks manipulating large integer values. Our
technique provides speedups against both existing Sketch solvers and
can solve benchmarks that existing Sketch solvers cannot handle.

1 Introduction

Program synthesis, the art of automatically generating programs that meet a
user’s intent, promises to increase the productivity of programmers by automat-
ing tedious, error-prone, and time-consuming tasks. Syntax-guided Synthesis
(SyGuS) [2], where the search space of possible programs is defined using a gram-
mar or a domain-specific language, has emerged as a common program synthesis
paradigm for many synthesis domains. One of the earliest and successful syntax-
guided program synthesis frameworks is program sketching [19], where (i) the
search space of the synthesis problem is described using a partial program in
which certain integer constants are left unspecified (represented as holes), and
(ii) the specification is provided as a set of assertions describing the intended be-
havior of the program. The goal of the synthesizer is to automatically replace the
holes in the program with integer values so that the resulting complete program
satisfies all the assertions. Thanks to its simplicity, program sketching has found
wide adoption in applications such as data-structure design [20], personalized
education [18], program repair [7], and many others.

2 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

The most popular sketching tool, Sketch [21], can efficiently solve complex
program sketches with hundreds of lines of code. However, Sketch often per-
forms poorly if the sketched program manipulates large integer values. Sketch’s
synthesis is based on an algorithm called counterexample-guided inductive syn-
thesis (Cegis) [21]. The Cegis algorithm iteratively considers a finite set I of
inputs for the program and performs SAT queries to identify values for the holes
so that the resulting program satisfies all the assertions for the inputs in I.
Further SAT queries are then used to verify whether the generated solution is
correct on all the possible inputs of the program. Sketch represents integers
using a unary encoding (a variable for each integer value) so that arithmetic
computations such as addition, multiplication etc. can be represented efficiently
in the SAT formulas as lookup operations. This unary encoding, however, results
in huge formulas for solving sketches with larger integer values as we also observe
in our evaluation. Recently, an SMT-like technique that extends the SAT solver
with native integer variables and integer constraints was proposed to alleviate
this issue in Sketch. It guesses values for the integer variables and propagates
them through the integer constraints, and learns from conflict clauses. However,
this technique does not scale well when the sketches contain complex arithmetic
operations—e.g., non-linear integer arithmetic.

In this paper, we propose a program transformation technique that allows
Sketch to solve program sketches involving large integer values while retain-
ing the unary encoding used by the traditional Sketch solver. Our technique
rewrites a Sketch program into an equivalent one that performs computations
over smaller values. The technique is based on the well-known Chinese Remain-
der Theorem, which states that, given distinct prime numbers p1, . . . , pn such
that N = p1 · . . . · pn, for every two distinct numbers 0 ≤ k1, k2 < N , there
exists a pi such that k1 mod pi 6= k2 mod pi. Intuitively, this theorem states that
tracking the modular values of a number smaller than N for each pi is enough to
uniquely recover the actual value of the number itself. We use this idea to replace
a variable x in the program with n variables xp1

, . . . , xpn
, so that for every i,

xpi
= x mod pi. Using closure properties of modular arithmetic we show that,

as long as the program uses the operators +,−, ∗,==, tracking the modular
values of variables and performing the corresponding operations on such values
is enough to ensure correctness. For example, to reflect the variable assignment
x = y+z, we perform the assignment xpi

= (ypi
+zpi

) mod pi, for every pi. Sim-
ilarly, the Boolean operation x == y will only hold if xpi

= ypi
, for every pi. To

identify what variables and values in the program can be rewritten, we develop
a data-flow analysis that computes what variables may flow into operations that
are not sound in modular arithmetic—e.g., <,>,≤, and /.

We provide a comprehensive theoretical analysis of the complexity of the
proposed transformation. First, we derive how many prime numbers are needed
to track values in a certain integer range. Second, we analyze the number of bits
required to encode values in the original and rewritten program and show that,
for the unary encoding used by Sketch, our technique offers an exponential
saving in the number of required bits.

Solving Program Sketches with Large Integer Values 3

We evaluate our technique on 181 benchmarks from various applications of
program sketching. Our results show that our technique results in significant
speedups over existing Sketch solvers and is able to solve 48 benchmarks on
which Sketch times out.

Contributions. In summary, our contributions are:

– A language IMP-MOD together with a modular semantics that represents in-
teger values using their remainders for a given set of primes and a proof that
this semantics is equivalent to the standard integer semantics (§ 4).

– A data-flow analysis for detecting variables that can be soundly executed in
the modular semantics and an algorithm for translating IMP programs into
IMP-MOD ones (§ 5).

– A synthesis algorithm for IMP-MOD programs and incremental synthesis al-
gorithm that lazily increases the number of primes used in the modular
semantics (§ 6).

– A complexity analysis that shows that synthesis for IMP-MOD programs re-
quires exponentially smaller SAT queries than synthesis in IMP (§ 7).

– An evaluation of our technique on 181 benchmarks that manipulate large
integer values. Our solver outperforms the default Sketch unary solver,
it can solve 48 new benchmarks that the Rong: no Sketch solver Rong:
cancannot solve, and is 15.9X faster than the Sketch SMT-like integer
solver on the hard benchmarks that take more than 10 seconds to solve
(§ 8).

An extended version containing all proofs and further details has been uploaded
to arXiv as supplementary material.

2 Motivating Example

In this section, we use a simple example to illustrate our technique and its
effectiveness. Consider the Sketch program polyArray presented in Figure 1b.
The goal of this synthesis problem is to synthesize a two-variable quadratic
polynomial (lines 7–8) whose evaluation p on given inputs x and y is equal to a
given expected-output array z (line 9). Solving the problem amounts to finding
non-negative integer values for the holes (??) and sign values, i.e., -1 or 1, for
the holes (??s) such that the assertion becomes true.1 In this case, a possible
solution is the polynomial:

p[i] = -17*y[i]^2 -8*x[i]*y[i]-17*x[i]^2 -3*x[i];

When attempting to solve this problem, the Sketch synthesizer times out at
300 seconds. To solve this problem, Sketch creates SAT queries where the
variables are the holes. Due to the large numbers involved in the computation of
this program, the unary encoding of Sketch ends up with SAT formulas with
approximately 45 million clauses.

1 In Sketch, holes can only assume positive values. This is why we need the sign holes,
which are implemented using regular holes as follows: if(??) then 1 else -1.

4 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

1 // n=4, x=[24,-1,0,-19], y=[-7,11,-3,13]

2 // z=[-9353 , -1983 , -153 , -6977]

3 polyArray(int n, int[n] x, int[n] y, int[n] z){

4 int[n] p;

5 int i=0;

6 while (i<n){

7 p[i]=??s
1*??1*y[i]

2+??s
2*??2*x[i]

2+??s
3*??3*x[i]*y[i]

8 +??s
4*??4*y[i]+??

s
5*??5*x[i]+??

s
6*??6;

9 assert p[i] == z[i];

10 i++; }

11 }

(a) Original sketch program.

1 // n=4, x=[24,-1,0,-19], y=[-7,11,-3,13]

2 // z=[-9353 , -1983 , -153 , -6977]

3 pAPrime(int n, int[n] x, int[n] y, int[n] z){

4 int[n] x2 ,x3 ,x5 ,x7 ,x11 ,x13 ,x17;

5 while (i<n){ // Initialize modular variables

6 x2[i]=x[i]%2;

7 x3[i]=x[i]%3;

8 ... i++; }

9 int i=0;

10 int[n] p2 ,p3 ,p5 ,p7 ,p11 ,p13 ,p17;

11 while (i<n){

12 p2[i]=(??s
1*(??1%2)*(y2[i]

2%2)%2

13 +??s
2*(??2%2)*(x2[i]

2%2)%2

14 +??s
3*(??3%2)*(x2[i]%2)*(y2[i]%2)%2

15 +??s
4*(??4%2)*(y2[i]%2)%2

16 +??s
5*(??5%2)*(x2[i]%2)%2

17 +??s
6*(??6%2)%2)%2;

18 ...

19 assert p2[i] = z2[i];

20 assert p3[i] = z3[i];

21 ...

22 i++; }

23 }

(b) Rewritten sketch program.

Fig. 1: Sketch program (a) and rewritten version with values tracked for differ-
ent moduli (b).

Sketch Program with Modular Arithmetic The technique we propose in this paper
has the goal of reducing the complexity of the synthesis problem by transforming
the program into an equivalent one that manipulates smaller integer values and
that yields easier SAT queries. Given the Sketch program in Figure 1b, our
technique produces the modified Sketch program pAPrime in Figure 1a. The
new Sketch program has the same control flow graph as the original one, but

Solving Program Sketches with Large Integer Values 5

instead of computing the actual values of the expressions x[·] and y[·], it tracks
their remainders for the set of prime numbers {2, 3, 5, 7, 11, 13, 17} using new
variables—e.g., x2[i] tracks the remainder of x[i] modulo 2.

The program pAPrime initializes the modular variables with the correspond-
ing modular values (lines 5–8). When rewriting a computation over modular
variables, the same computation is performed modularly (lines 12–17). For ex-
ample, the term ??s1 ∗ ??1*y[i]

2 when tracked modulo 2 is rewritten as

(??s
1*(??1%2)*((y2[i]%2)

2%2))%2

In the rewritten program, the variables i and n are not tracked modularly,
since such a transformation would incorrectly access array indices. Finally, the
assertions for different moduli share the same holes as the solution to the Sketch

has to be correct for all modular values. In the rest of the paper, we develop a
data flow analysis that detects when variables can be tracked modularly.

Sketch can solve the rewritten program in less than 2 seconds and produce
hole values that are correct solutions for the original program. This speedup
is due to the small integer values manipulated by the modular computations.
In fact, the intermediate SAT formulas generated by Sketch for the program
pAPrime have approximately 120 thousand clauses instead of the 45 million
clauses for polyArray. Due to the complex arithmetic in the formulas, even if
Sketch uses the SMT-like native integer encoding, it still requires more than
300 seconds to solve this problem.

While this technique is quite powerful, it does have some limitations. In
particular, the solution to the rewritten Sketch is guaranteed to be a correct
solution only for inputs that cause intermediate values of the program to be in
a range [d1, d2] such that d2 − d1 ≤ 2× 3× 5× 7× 11× 13× 17 = 510, 510. We
will prove this result in Section 4.

3 Preliminaries

In this section, we describe the IMP language that we will consider through-
out the paper and briefly recall the counter-example guided inductive synthesis
algorithm employed by the Sketch solver.

For simplicity, we consider a simple imperative language IMP with integer
holes for defining the hypothesis space of programs. The syntax and semantics
of IMP are shown in Appendix ??. Without loss of generality, we assume the
programs consists of a single program f(v1, · · · , vn, ??1, . . .??m) with n integer
variables and m integer holes. The body of the program f consists of a sequence
of statements, where a statement s can either be a variable assignment, a while

loop statement, an if conditional statement, or an assert statement. The holes
?? denote integer constant values that are unknown and the goal of the synthesis
process is to compute these values such that a set of desired program assertions
are satisfied for every possible input values to f .2

2 Our implementation also supports for-loops, recursion, arrays, and complex types.

6 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

Example 1. An example IMP sketch denoting a partial program is shown below.

triple(n,h ,??){ h=??; assert h*n==n+n+n; }

The goal of the synthesizer is to compute the value of the hole ?? such that the
assertion is true for all possible input values of n and h. For this example, ?? = 3
is a valid solution.

The Sketch solver uses the counter-example guided inductive synthesis al-
gorithm (Cegis) to find hole values such that the desired assertions hold for all
input values. Formally, the Sketch synthesizer solves the following constraint:

∃?? ≡ (??1, · · ·, ??m)∈Zm. ∀in∈I. Jf(in, ??)KIMP 6= ⊥

where Z denotes the domain of all integer values, ?? denotes the list of unknown
hole values (??1, · · · , ??m) ∈ Z

m, I denotes the domain of all input argument
values to the function f , and Jf(in, ??)KIMP 6= ⊥ denotes that the program satis-
fies all assertions. The synthesis problem is in general undecidable for a language
with complex operations such as the IMP language because of the infinite size of
possible hole and input values. To make the synthesis process more tractable,
Sketch imposes a bound on the sizes of both the input domain (Ib) and the
domain of hole values (Zb) to obtain the following constraint:

∃?? ≡ (??1, · · ·, ??m)∈Zm
b . ∀in∈Ib. Jf(in, ??)KIMP 6= ⊥

The bounded domains make the synthesis problem decidable, but the second-
order quantified formula results in a search space of hole values that is still huge
for any reasonable bounds. To solve such bounded equations efficiently, Sketch

uses the Cegis algorithm to incrementally add inputs from the domain until
obtaining hole values ?? that satisfy the assertion predicates for all the input
values in the bounded domain. The algorithm solves the second-order formula
by iteratively solving a series of first-order queries. It first encodes the existential
query (synthesis query) over a randomly selected input value in0 to find the hole
values H that satisfy the predicate for in0 using a SAT solver in the backend.

∃?? ≡ (??1, · · ·, ??m) ∈ Z
m
b . Jf(in0, ??)K

IMP 6= ⊥

It then encodes another existential query (verification) to now find a counter-
example in1 for which the predicate is not satisfied for the previously found hole
values.

∃in ∈ Ib. ¬Jf(in,H)KIMP 6= ⊥

If no counter-example input can be found, the hole values are returned as the de-
sired solution. Otherwise, the algorithm computes a new hole value that satisfies
the assertion for all the counter-example inputs found so far. This process contin-
ues iteratively until either a desired hole value is found (i.e. no counter-example
input exists), no satisfiable hole value is found (i.e. the synthesis problem is
infeasible), or the SAT solver times out.

Solving Program Sketches with Large Integer Values 7

Integer Encoding The Sketch solver can efficiently solve the synthesis con-
straint in many domains, but it does not scale well for sketches manipulating
large numbers. Sketch uses a unary encoding to represent integers, where the
encoded formula consists of a variable for each integer value. The unary encod-
ing allows for simplifying the representation of complex non-linear arithmetic
operations. For example, a multiplication operation can be represented as sim-
ply a lookup table using this encoding. In practice, the unary encoding results
in magnitudes of faster solving times compared to the logarithmic encoding for
many synthesis problems. However, this also results in huge SAT formulas in
presence of large integers. Recently, a new SMT-like technique based on extend-
ing the SAT solver with native integer variables and constraints was proposed to
alleviate this issue in Sketch. Similar to the Boolean variables, this extended
solver guesses for integer values and propagates them in the constraints while
also learning from conflict clauses. Note that Sketch uses these SAT extensions
and encodings instead of an SMT solver as SMT doesn’t scale well for the non-
linear constraints typically found in the synthesis problems. Our new technique
for handling computations over large numbers still maintains the efficient unary
encoding of integers and computations over them.

4 Modular Arithmetic Semantics

In this section, we present the language IMP-MOD in which variables can be
tracked using modular arithmetic. We start by recalling the Chinese Remain-
der Theorem, then define both a modular and integer semantics for the IMP-MOD
language, and show that the two semantics are equivalent.

4.1 The Chinese Remainder Theorem

The Chinese Remainder Theorem is a powerful number theory result that shows
the following: given a set of distinct primes P = {p1, . . . , pk}, any number n in
an interval of size p1 · . . . · pk can be uniquely identified from the remainders
[n mod p1, · · · , n mod pk]. In Section 4.2, we will use this idea to define the
semantics of the IMP-MOD language. The main benefit of this idea is that the
remainders could be much smaller than actual program values.

Example 2. For P = [3, 5, 7] and an integer 101, its remainders [2, 1, 3] are much
smaller than 101. However, any number of the form 101 + 105 × n also has
remainders [2, 1, 3] with respect to the same prime set.

In general, one cannot uniquely determine an arbitrary integer value from its
remainders for some set P—i.e., the mapping from a number to its remainders
is an abstraction in the sense of abstract interpretation [6]. However, if we are
interested in a limited range of integer values [L,U), one can choose a set of
primes P = {p1, . . . , pk} such that, for values L ≤ x < U , the map [r1, · · · , rk] 7→
x, where x ≡ ri mod pi, is an injection.

8 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

Modular Expr aP := cP | vP | aP1 op
P

a a
P

2 | toPrime(a)

Modular Op opPa := + | − | ∗

Arith Expr a := ?? | c | v | a1 opa a2

Arith Op opa := + | − | ∗ | /

Bool Expr b := not b | a1 opc a2 | b1 and b2 | b1 or b2 | a
P

1==aP2

Comp Op opc := < | > | ≤ | ≥

Stmt s := v = a | vP = aP | s1; s2

| while(b) {s} | if(b) s1 else s2 | assert b

Program P := f(v1, · · · , vn, v
P

1 , · · · , v
P

m, ??1, . . . , ??l) {s}

Fig. 2: Syntax of the IMP-MOD language.

Theorem 1 (Chinese Remainder Theorem [4]). Let p1, ..., pk be positive
integers that are pairwise co-prime—i.e., no two numbers share a divisor larger
than 1. Denote N =

∏k

i=1 pi, and let d, r1, r2, . . . , rk be any integers. Then
there is one and only one integer d ≤ x < d + N such that x ≡ ri mod pi for
every 1 ≤ i ≤ k.

We define the translation function mP(x) := [x mod pi, · · · , x mod pk] that
maps an integer to its set of remainders with respect to P. When mP(x) is

bijective on some set R, we denote with m−1,R
P

: [0, p1) × · · · × [0, pk) → R its
inverse function.

Example 3. Let x be a integer in the range [0, 105) (note that 105 = 3× 5× 7).
If we know that the value of x is congruent to [2, 1, 3] modulo {3, 5, 7}, we can
uniquely identify the value of x to be 101 by observing that 101 ≡ 2 mod 3, 101 ≡
1 mod 5, and 101 ≡ 3 mod 7.

The following lemma shows that the function mP is closed under addition,
subtraction and multiplication of integers.

Lemma 1. For every set of primes P, integers x and y, and op ∈ {+,−, ∗}, the
following holds: mP(x op y) = mP(x) op mP(y).

4.2 The IMP-MOD Language

In this section, we define the IMP-MOD language (syntax in Figure 2), a variant
of the IMP language for which the semantics can be defined using modular arith-
metic.3 An IMP-MOD program is parametric on a set P = {p1, . . . , pk} of distinct

3 We consider the simple subset for a clear presentation of the semantics, but our
framework works for the full IMP language (and for more complex language con-
structs) as we will see in the later sections.

Solving Program Sketches with Large Integer Values 9

JtoPrime(a)KP
σ,σP := [JaKP

σ,σP mod p1, · · ·]

JvPKP
σ,σP := σP(v) JcPKP

σ,σP := [c mod p1, · · · , c mod pk]

JaP1 op
P

a a
P

2K
P

σ,σP := [(x11 op
P

a x
2

1) mod p1, · · ·] where JaPi K
P = [xi1, · · · , x

i
k]

JaP1== aP2K
P

σ,σP := x11==x21 ∧ · · · ∧ x
1

k == x2k where JaPi K
P = [xi1, · · · , x

i
k]

JcKP
σ,σP := c JvKP

σ,σP := σ(v) Ja1 opa a2K
P

σ,σP := Ja1K
P

σ,σP opa Ja2K
P

σ,σP

Jv = aKP
σ,σP := (σ[v ← [JaKP

σ,σP], σ
P) JvP = aPKP

σ,σP := (σ, σP[vP ← [JaPKP
σ,σP])

Fig. 3: Modular semantics.

prime numbers. The structure of an IMP-MOD program is similar to an IMP pro-
gram, but IMP-MOD supports two types of variables and arithmetic expressions:
the regular IMP ones (i.e., v, a, and b), which operate over an integer semantics,
and the modular ones (i.e., vP, aP, and bP), which take as an additional parame-
ter the set of primes P and operate over a modular semantics. The semantics of
some of the key constructs of IMP-MOD is shown in Figure 3.

The key idea of the modular semantics is that the value of each program
variable in vP and arithmetic expressions in aP is denoted by a tuple of val-
ues, one for each prime number pi ∈ P. For example, the value of the con-
stant cP is represented by the tuple [c mod p1, · · · , c mod pk], where each in-
dividual value denotes the remainder of c when divided by the prime number
pi ∈ P. Formally, the program f has two sets of variables V Z = {v1, · · · , vn}
and V P = {vP1 , · · · , v

P

m}, which contain all the integer and prime variables re-
spectively, and a set of holes H = {??1, . . . , ??k}. The denotation function, uses
two valuation functions: (i) σ : V Z ∪ H → Z, which maps variables and holes
to integer values, (ii) σP : V P → [0, p1)× · · · × [0, pk), which maps primed vari-
ables to modular values. The expression toPrime(a) converts the integer value
of an integer expression a to a modular tuple. Arithmetic expressions in aP are
computed using modular values with the result being obtained using modular
arithmetic with respect to the corresponding primes in P. Note that the only
comparison operator allowed over modular expressions is == and that the divi-
sion operator cannot be applied to modular expressions. While the syntax does
not directly allow for holes to be represented modularly—i.e., we do not have
expressions of the form ??P—an expression of the form toPrime(??) effectively
achieves the objective of representing a hole ?? modularly.

4.3 Equivalence between the two Semantics

Next, we provide an alternative integer semantics, which applies the IMP integer
semantics to modular expressions and show that, under some assumptions on
the values manipulated by the program, the modular and integer semantics are
equivalent. We will use this result to build our modified synthesis algorithm.

10 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

JtoPrime(a)Kσ1,σ2
:= JaKσ1,σ2

JvPKσ1,σ2
:= σ2(v

P) JcPKσ1,σ2
:= c

JaP1 op
P

a a
P

2Kσ1,σ2
:= JaP1Kσ1,σ2

opa JaP2Kσ1,σ2
JaP1==aP2Kσ1,σ2

:= JaP1Kσ1,σ2
==JaP2Kσ1,σ2

JcKσ1,σ2
:= c JvKσ1,σ2

:= σ1(v) Ja1 opa a2Kσ1,σ2
:= Ja1Kσ1,σ2

opa Ja2Kσ1,σ2

Jv = aKσ1,σ2
:= (σ1[v ← [JaKσ1,σ2

], σ2) JvP = aPKσ1,σ2
:= (σ1, σ2[v

P ← [JaPKσ1,σ2
])

Fig. 4: Integer semantics.

Integer Semantics The integer semantics of IMP-MOD is shown in Figure 4 (de-
noted J·Kσ1,σ2

). In this semantics, modular expressions are evaluated as integer
expressions using the same semantics as for IMP—i.e., the values of modular vari-
ables and modular arithmetic expressions are denoted by integer values. There-
fore, in the integer semantics, we use two valuation functions σ1 : V Z ∪H 7→ Z

mapping variables and holes to integers and σ2 : V P 7→ Z mapping modular
variables to integers.

Relation between the Two Semantics We now show that the modular semantics
is, in some sense, equivalent to the integer semantics. For the rest of this section,
we fix a set of distinct primes P = {p1, · · · , pk}.

To prove the equivalence of the two program semantics, we will require the
values of modular expressions to lie in some range that is covered by the prime
numbers in P. The following definition captures this restriction.

Definition 1. Given a modular arithmetic expression aP (resp. Boolean expres-
sion b) and some integers L < U , we say aP with context (σ1, σ2) is uniformly in
the range R := [L,U) —aP ∈σ1,σ2

R for short—if under the integer semantics,
all evaluation of modular subexpressions of aP (resp. b) are in the range R:

– aP ∈σ1,σ2
R, iff JaPKσ1,σ2

∈ R;

– aP1 == aP2 ∈σ1,σ2
R, iff aP1 ∈σ1,σ2

R, aP2 ∈σ1,σ2
R;

– b1 and b2 ∈σ1,σ2
R, iff b1 ∈σ1,σ2

R, b2 ∈σ1,σ2
R;

– b1 or b2 ∈σ1,σ2
R, iff b1 ∈σ1,σ2

R, b2 ∈σ1,σ2
R;

– not b ∈σ1,σ2
R, iff b ∈σ1,σ2

R;
– a1 opc a2 ∈σ1,σ2

R for any arithmetic expressions a1, a2 and operator opc.

Given a valuation function σ : V P 7→ Z, we write mP ◦ σ to denote the
modular valuation obtained by applying the mP function to σ—i.e., for every
vP ∈ V P, (mP ◦ σ)(v

P) = mP(σ(v
P)). Similarly, for a modular valuation function

σP : V P → [0, p1) × · · · [0, pk), we denote m−1,R
P

◦ σP the integer valuation from

V P to R such that, for every vP ∈ V P, (m−1,R
P

◦ σP)(vP) = m−1,R
P

(σP(vP)). The
following lemma shows that, when the values of modular arithmetic expressions
lay in an interval of size N = p1 · . . . · pk the modular and integer semantics of
modular arithmetic expressions are equivalent.

Solving Program Sketches with Large Integer Values 11

Lemma 2. Given a set of primes P = {p1, · · · , pk}, an arithmetic expression
aP, and two valuation functions σ1 : V Z ∪H 7→ Z and σ2 : V P 7→ Z, we have

mP(Ja
PKσ1,σ2

) = JaPKPσ1,mP◦σ2

Moreover, if there exists an interval R of size N = p1 · . . . · pk such that
aP ∈σ1,σ2

R, then

m−1,R
P

(JaPKPσ1,mP◦σ2
) = JaPKσ1,σ2

.

Similarly, we show that the two semantics are also equivalent for Boolean
expressions.

Lemma 3. Given a set of primes P = {p1, · · · , pk}, an interval R of size N =
p1 · . . . ·pk, a Boolean expression b, and two valuation functions σ1 : V Z∪H 7→ Z

and σ2 : V P 7→ Z, if b ∈σ1,σ2
R, then JbKσ1,σ2

= JbKPσ1,mP◦σ2
.

We are now ready to show the equivalence between the modular semantics
and the integer semantics for programs P ∈ IMP-MOD. The semantics of a pro-
gram P = f(V Z, V P, H) {s} is a map from valuations to valuations, i.e., given
a valuation σ1 : V Z → Z for integer variables, a valuation σ2 : V P → Z for mod-
ular variables and a valuation σH : H → Z for holes, we have JP K(σ1, σ2, σ

H) =
JsKσ1∪σH ,σ2

and JP KP(σ1, σ2, σ
H) = JsKP

σ1∪σH ,mP◦σ2

. Therefore, it is sufficient to
show that the two semantics are equivalent for any statement s.

The two semantics are equivalent for a statement s if, under the same input
valuations, the resulting valuations of the semantics can be translated to each
other. Formally, given valuations σ1, σ2 and an interval R of size N , we say
JsKσ1,σ2

≡P JsKPσ1,mP◦σ2
iff σ′

1 = σ′′
1 , mP ◦ σ′

2 = σP

2 and σ′
2 = m−1,R

P
◦ σP

2 where

JsKσ1,σ2
= (σ′

1, σ
′
2) and JsKPσ1,mP◦σ2

= (σ′′
1 , σ

P

2).

We define uniform inclusion for statements.

Definition 2. Given a set of primes P, two integers L < U and a statement s,
we say s with context (σ1, σ2) is uniformly in the range R := [L,U)—s ∈σ1,σ2

R
for short—if under the integer semantics, all evaluation of modular subexpres-
sions of s are in the range R:

– (vP = aP) ∈σ1,σ2
R iff aP ∈σ1,σ2

R.

– while(b){s} ∈σ1,σ2
R iff s ∈σ1,σ2

R and b ∈σ1,σ2
R.

– s1; s2 ∈σ1,σ2
R iff s1 ∈σ1,σ2

R and s2 ∈σ1,σ2
R.

– if(b) s1 else s2 ∈σ1,σ2
R iff s1 ∈σ1,σ2

R, s2 ∈σ1,σ2
R and b ∈σ1,σ2

R.

– assert b ∈σ1,σ2
R iff b ∈σ1,σ2

R.

At last, the two semantics are equivalent for statements.

Theorem 2. Given a set of primes P = [p1, · · · , pk], a statement s and two
valuation functions σ1 : V Z∪H → Z and σ2 : V P → Z, if there exists an interval
R of size N such that s ∈σ1,σ2

R, then JsKσ1,σ2
≡P JsKPσ1,mP◦σ2

.

12 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

Algorithm 1: returns variables that should be tracked using modular/in-
teger semantics.

/* f: sketched function, V P variables to be tracked modularly, V Z

variables to be tracked with integer values */

1 function DataFlowAnalysis(f)

2 S ← {/,<,>,≤,≥};V Z ← ∅
3 for op ∈ S do

/* Compute all variables v that may flow into op */

4 V Z ← V Z ∪ Dataflow(op, f)

5 V P ← V \ V Z

6 return (V Z, V P)

5 From IMP to IMP-MOD Programs

In this section, we develop a data flow analysis for detecting variables in IMP

programs for which it is sound to track values modularly. We then use this data
flow analysis to rewrite an IMP program to an equivalent IMP-MOD program.

5.1 Data Flow Analysis

The formalization of IMP-MOD in Section 4.2 made it clear that the modular
semantics is only appropriate when integer values are manipulated using addi-
tion, multiplication, subtraction, and equality. Other operations like division and
less-than comparison cannot be computed soundly in modular arithmetic.

Example 4. Consider an integer variable x with modular value x2 under modulus
2 and x3 under modulus 3, and an integer variable y with modular value y2,
y3 under corresponding moduli. Then the assignment of x = y + y; implies
x2 = (y2 + y2) mod 2; and x3 = (y3 + y3) mod 3. However, x = x/y; does not
imply x2 = (x2/y2) mod 2; and x3 = (x3/y3) mod 3.

We now define a data flow analysis (shown in Algorithm 1) for computing
which variables in a program must be tracked with the integer semantics (i.e., the
set V Z) and which variables can be soundly tracked using the modular semantics
(i.e., the set V P). For each operator op in {/,<,>,≤,≥}, the analysis computes
the set of variables that may flow into the operands of an expression of the form
e1 op e2. In practice, this is done via backward may analysis, noted as Dataflow
procedure in Algorithm 1. The obtained set of variables must be tracked using
the integer semantics. The remaining variables will never flow into a problematic
operator and can therefore be tracked using the modular semantics.

Implementation Remark Since our implementation also supports arrays and re-
cursion, the data flow analysis in Algorithm 1 is inter-procedural and the set S
also contains the array indexing operator []—i.e., given an expression arr[a], if
a variable v may flow into a, then a must be tracked using the integer semantics.

Solving Program Sketches with Large Integer Values 13

Ra(a) =



















vP if a ≡ v and v ∈ V P

cP if a ≡ c

Ra(a1) op
P

a Ra(a2) if a ≡ a1 op
P

a a2

toPrime(a) otherwise

Rb(b) =



















Ra(a1) == Ra(a2) if b ≡ a1 == a2

Rb(b1) and Rb(b2) if b ≡ b1 and b2

not Rb(b1) if b ≡ not b2

b otherwise

Rs(s) =







































Rs(s1);Rs(s2) if s ≡ s1; s2

v = a if s ≡ v = a and v ∈ V Z

vP = Ra(a) if s ≡ v = a and v ∈ V P

if(Rb(b)) Rs(s0) else Rs(s1) if s ≡ if(b) s0 else s1

while(Rb(b)) {Rs(s)} if s ≡ while b {s}

assert Rb(b) if s ≡ assert b

Fig. 5: Subset of rules for the translation from IMP to IMP-MOD programs. Rules
are parametric in V Z, V P with P: Rf (f(V, ??){s}) = f(V Z, V P, ??){Rs(s)}.

Furthermore, while in our formalization we allow variables to be tracked using
only one of the two semantics, in our implementation, we allow variables to be
tracked differently (using actual values or modular values) at different program
points by tracking, for each variable v, the program points for which the actual
value of v is needed, which is done by using the same data-flow analysis. In this
case, a variable might initially need to be tracked using actual values but can
later be tracked using modular values.

Example 5. Consider the sketch program polyArray in Figure 1b. For this pro-
gram, Algorithm 1 will return that the variables x and y can be tracked modu-
larly. However, the variables i and n must be tracked using the integer semantics
since they are used in a < operation and as array indices.

5.2 From IMP to IMP-MOD

Now that we have computed what sets of variables can be tracked modularly, we
can transform the IMP program into an IMP-MOD program. The transformation
Rf that rewrites f into an IMP-MOD program is shown in Figure 5. The key idea
of the program transformation is to use the sets V Z and V P to only rewrite
variables and sub-expressions of f for which the modular arithmetic can be
performed soundly.

Once we get a solution for the IMP-MOD program as hole values, we can get
a solution for the IMP program by mapping the hole to integer values given by
the integer semantics.

14 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

Example 6. Consider a program where the dataflow analysis computes V Z =
{i, n} and V P = {x}. The statement x = x + i + 1 is rewritten to xP = xP +
toPrime(i) + 1P.

The transformation Rf is sound.

Theorem 3. Given an IMP program f , and sets V Z and V P resulting from the
data flow analysis on f , the program Rf (f) is in the IMP-MOD language. More-
over, JfKIMP = JRf (f)K.

6 Solving IMP-MOD Sketches

In this section, we discuss how synthesis in the modular semantics relates to syn-
thesis in the integer semantics and provide an incremental algorithm for solving
IMP-MOD sketches.

6.1 Synthesis in IMP-MOD

Given a set of integers R we say that a variable valuation σ is in R (denoted
σ ∈ R) if for every v, we have σ(v) ∈ R. Similarly to what we saw in Sec-
tion 3, we assume that the sketch has to be solved for finite ranges of possible
values for the hole (RH) and input values (Rin). Solving an IMP-MOD problem
P = f(V, V P, H){s} for the integer semantics amounts to solving the following
constraint:

∃σH ∈ RH .∀σ1, σ2 ∈ Rin.JsKσ1∪σH ,σ2
6= ⊥.

According to Theorem. 2, given a set of distinct primes P = {p1, · · · , pk}
and variable valuations σH , σ1, and σ2, if there exists a range R of size N =
p1 · . . . · · · pk such that s ∈σ1∪σH ,σ2

R, the modular semantics and the integer
semantics are equivalent to each other. Using this observation, we can define
the set of variable valuations for which the two semantics are guaranteed to be
equivalent:

IP

R:=
{

(σ1, σ2) | ∀σ
H∈RH .∃R. |R|=N ∧ s∈σ1∪σH ,σ2

R
}

.

Since for every σH ∈ RH and σ1, σ2 ∈ IP

R we have that JsKP
σ1∪σH ,mP◦σ2

=

JsKσ1∪σH ,σ2
, any solution to an IMP-MOD program in the modular semantics is

also a solution to the following formula in the integer semantics:

∃σH ∈ RH .∀σ1, σ2 ∈ IP

R.JsKσ1∪σH ,σ2
6= ⊥.

When all valuations in σ1, σ2 ∈ Rin are also elements of IP

R, any solution to
an IMP-MOD program in the modular semantics is guaranteed to be a correct
solution under the integer semantics.

To summarize, if the synthesizer returns UNSAT for the IMP-MOD program,
the problem is unrealizable and does not admit a solution. When it returns a solu-
tion, the solution is correct if it only produces valuations in the range allowed by

Solving Program Sketches with Large Integer Values 15

Algorithm 2: Incremental synthesis for IMP-MOD.

/* f: function, P: set of primes */

1 function IncrementalSynthesis(f,P)
2 P

′ ← [p1]
3 fsyn ← Synthesis(f,P′)
4 while ∃pcex ∈ P : ¬Verify(fsyn, pcex) do

5 P
′ ← P

′ ∪ pcex
6 fsyn ← Synthesis(f,P′)
7 if fsyn == UNSAT then return ∅ ;

8 return fsyn

the choice of prime numbers. In practice, one can use a verifier to check the cor-
rectness of the synthesized solution and add more prime numbers to the modular
synthesizer if needed. In fact, this is the main idea behind the counterexample-
guided inductive synthesis algorithm used by Sketch (Section 3).

6.2 Incremental Synthesis Algorithm

In this section, we propose an incremental synthesis algorithm that builds on
the following observation. The set of variable valuations for which modular and
integer semantics are equivalent increases monotonically in the size of P:

P1 ⊆ P2 =⇒ IP1

R ⊆ IP2

R . (1)

Algorithm 2 uses Equation 1 to add prime numbers lazily during the synthesis
process. The algorithm first constructs a set P′ = {p1} with the first prime num-
ber p1 ∈ P and synthesizes a solution that is correct for computations modulo
the set P

′. It then checks if the synthesized solution fsyn satisfies the assertions
with respect to all prime numbers in P. If yes, fsyn is returned as the solution.
Otherwise, the algorithm finds a prime pcex ∈ P where Verify(fsyn, pcex) does
not hold and it adds it to the set P

′ continuing the iterative algorithm. Due to
Equation 1, Algorithm 2 is sound and complete with respect to the synthesis
algorithm that considers the full prime set P all at once.

In practice, the user could use domain knowledge to estimate a suitable set
of primes or alternatively use our incremental algorithm to discover appropriate
prime sets. The set of prime numbers {2, 3, 5, 7, 11, 13, 17} could usually instan-
tiate a range R that is large enough for most synthesis tasks based on Sketch.

7 Complexity of Rewritten Programs

In this section, we analyze how many bits are necessary to encode numbers for
both semantics using unary and binary bit-vector encodings of integers (Sec. 7.1
and 7.2), and show how many prime numbers are necessary in the modular
semantics to cover values up to a certain bound (Sec. 7.3). The following results
build upon several number theory results that the reader can consult at [9, 15].

16 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

7.1 Bit-complexity of Binary Encoding

In this section, we analyze how many bits are necessary when representing an
interval of size N in binary in our modular semantics. In the rest of the section,
we consider the set of primes Pn = {p | p < n} = {p1, . . . , pk} containing the
prime numbers that have value smaller than n. We will show in Section 8 that
this choice of prime number also yields good performance in practice. Concretely,
we are interested in knowing what is the magnitude of the number N = p1 ·. . .·pk
and how many bits are used to represent the numbers in Pn.

We start by introducing the notion of primorial.

Definition 3 (Primorial). Given a number n, the primorial n# is defined as
the product of all primes smaller than n—i.e., n# =

∏

p∈Pn

p.

The primorial captures the size N of the interval covered by the Chinese Re-
mainder Theorem when using prime numbers up to n. The following number
theory result gives us a close form for the primorial and shows that the number
N has approximately n bits.

n# = e(1+o(1))n = 2(1+o(1))n (2)

We use another number theory notion to quantify the number of bits in Pn.

Definition 4 (Chebyshev function). Given a number n, the Chebyshev func-
tion ϑ(n) is the sum of the logarithms of all the prime numbers smaller than
n—i.e., ϑ(n) =

∑

p∈Pn

log p.

The following number theory result relates the primorial to the Chebyshev func-
tion.

ϑ(n) = log(n#) = log 2(1+o(1))n = (1 + o(1))n (3)

Aside from rounding errors, the Chebyshev function captures the number of bits
required to represent the numbers in Pn. To obtain a more precise bound on this
number, we need a bound for the formula

∑

p∈Pn

⌈log p⌉.

We start by recalling the following fundamental number theory result.

Theorem 4 (Prime number theorem). The set Pn has size approximately
n/ log n.

Using Theorem 4, we get the following result.

∑

p∈Pn

⌈log p⌉ ≤ n/ log n+
∑

p∈Pn

log p ≈ (1 + o(1))n (4)

Representing a number en in a classic binary encoding requires log2(e
n) =

(1 + o(1))n bits and, combining Equations 2 and 4, we get the following result.

Theorem 5. Representing a number 2n in binary requires (1+o(1))n bits under
both modular and integer semantics.

Solving Program Sketches with Large Integer Values 17

Hence, representing a number in binary requires the same number of bits in
the both semantics.

Example 7. Consider the set P18 = {2, 3, 5, 7, 11, 13, 17}, which can model an
interval of N = 510, 510 integers (i.e., n = 18 in Theorem 5). Representing N in
binary requires 19 bits while the binary representations of all the primes in P18

uses 22 bits. Both numbers are close to 18 as predicted by the theorem.

7.2 Bit-complexity of Unary Encoding

As discussed in Sec. 3, the default Sketch solver encodes numbers using a unary
encoding—i.e., Sketch requires 2n bits to encode the number 2n. Representing
the same number in unary under the modular semantics requires only prime
numbers smaller than n and therefore

∑

p∈Pn

p bits. We can then use the following

closed form to approximate this quantity.

∑

p∈Pn

p ∼
n2

2 log n
(5)

Equation 5 yields the following theorem.

Theorem 6. Representing a number 2n in unary requires 2n bits in the integer

semantics and approximately n2

2 logn
bits in the modular semantics.

These results show that, under a unary encoding, the modular semantics is
exponentially more succinct than the integer semantics.

Example 8. Consider again the prime set P18 = {2, 3, 5, 7, 11, 13, 17}, which can
model an interval of N = 510, 510 integers. Representing N in unary requires
510,510 bits. On the other hand, the sum of the bits in the unary encoding of
the primes in P18 is 58.

7.3 Number of Required Primes

We analyze how many primes are needed to represent a certain number in the
modular semantics. We start by introducing the following alternative version of
the primorial.

Definition 5 (Prime Primorial). For the n-th prime number pn, the prime

primorial pn# is defined as the product of the first n primes—i.e., pn# =
n
∏

k=1

pi.

The following known number theory result gives us an approximation for the
prime primorial.

pn# = e(1+o(1))n logn (6)

Notice how the approximation of the primorial differs from that of the prime
primorial. This is due to the fact that prime numbers are sparse—i.e., the n-th
prime number is approximately n log n.

Using Equation 6 we obtain the following result.

18 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

Theorem 7. Representing numbers in an interval of size N = en logn in the
modular semantics requires the first n prime numbers.

Since the relation k = n log n does not admit a closed form for n, we cannot
derive exactly how many primes are needed to represent a number 2k with k
bits. It is however clear from the theorem that the number of required primes
grows slower than k.

8 Evaluation

We implemented a prototype of our technique as a simple compiler in Java. Our
implementation provides a simplified Sketch frontend, which only allows the
limited syntax we support. Given a Sketch file, our tool rewrites it into a differ-
ent Sketch file that operates according to the modular semantics. We will use
Unary to denote the result obtained by running the default version of Sketch

with unary integer encoding on the original Sketch file, Binary to denote the
result obtained by running the version of Sketch using an SMT-like native in-
teger solver based on binary integer encoding, Unary-p to denote the result of
running the default Sketch version on our modified Sketch file, and Unary-

p-inc to denote the result of running the default version of Sketch on the file
generated by the incremental version of our algorithm described in Section 6. As
expected from our theory, the prime technique is not beneficial for the SMT-like
native integer solver and always results in worse runtime. Therefore, we do not
present data for this solver. All experiments were performed on a machine with
4.0GHz Intel Core i7 CPU with 16GB RAM with Sketch-1.7.5 and we use a
timeout value of 300 seconds (we also report out-of-memory errors as timeouts).

Our evaluation answers the following research questions:

Q1 How does the performance of Unary-p compare to Unary and Binary?
Q2 How does the incremental algorithm compare to the non-incremental one?
Q3 Is Unary-p’s performance sensitive to the set of selected prime numbers?
Q4 How many primes are needed by Unary-p to produce correct solutions?
Q5 Does Unary generate larger SAT queries than Unary-p?

8.1 Benchmarks

We perform our evaluation on three families of programs.

Polynomials The first set of benchmarks contains 81 variants of the polynomial
synthesis problem presented in Figure 1. The original version of this benchmark
appears in the Sketch benchmark suite under the name polynomial.sk. For
each benchmark, we generate a random polynomial f , random inputs {−→x }, and
take the set {(−→x , f(x))} as specification. Each benchmark in this set has the
following parameters: #Ex∈ {2, 4, 6} is the number of input-output examples as
specification, cbits∈ {5, 6, 7} denote the number of bits hole values can use,
exIn∈ {[−10, 10], [−30, 30], [−50, 50]} denotes the range of randomly generated

Solving Program Sketches with Large Integer Values 19

input examples and coeff∈ {[−10, 10], [−30, 30], [−50, 50]} denotes the range of
randomly generated coefficients in the polynomial f .

Invariants The second set of benchmarks contain 46 variants of two invariant
generation problems obtained from a public set of programs that require poly-
nomial invariants to be verified [8]. We selected the two programs in which at
least one variable could be tracked modularly by our tool (the other programs
involved complex array operations or inequality operators) and turned the verifi-
cation problems into synthesis problems by asking Sketch to find a polynomial
equality (using the program variables) that is an invariant for the loop in the
program. To control the size of the magnitudes of the inputs, we only require
the invariants to hold for a fixed set of input examples.

The first problem, mannadiv, iteratively computes the remainder and the
quotient of two numbers given as input. The invariant required to verify mannadiv

is a polynomial equality of degree 2 involving 5 variables. The Sketch template
required to describe the space of all polynomial equalities has 32 holes and can-
not be handled by any of the Sketch solvers we consider. We therefore simplify
the invariant synthesis problems in two ways. In the first variant, we reduce the
ranges of the hole values in the templates by considering cbits ∈ {2, 3}. In the
second variant, we set cbits = {5, 6, 7}, but reduce the number of missing hole
values to 4 (i.e., we provide part of the invariant). Each benchmark takes two
random inputs and we consider the following input ranges {[1, 50], [1, 100]}. In
total, we have 10 benchmarks for mannadiv.

The second problem, petter, iteratively computes the sum
∑

1≤i≤n i
5 for a

given input n. The invariant required to verify petter is a polynomial equality
of degree 6 involving 3 variables. The Sketch template required to describe all
such polynomial equalities has 56 holes and cannot be handled by any of the
Sketch solvers we consider. We consider the following simplified variants of the
problem: (i) petter_0 computes

∑

1≤i≤n 1 and requires a polynomial invariant
of degree one, (ii) petter_x computes

∑

1≤i≤n x for a given input variable x
and requires a polynomial invariant of degree two, (iii) petter_1 computes
∑

1≤i≤n i and requires a polynomial invariant of degree two, and (iv) petter_10
computes

∑

1≤i≤n i+ 1 and requires a polynomial invariant of degree two. Each
benchmark takes two random inputs and we consider the following input ranges
{[1, 10], [1, 100], [1, 1000]}. In total, we have 12 variants of petter, each run for
values of cbits ∈ {5, 6, 7}—i.e., a total of 36 benchmarks.

Program Repair The third set of benchmarks contains 54 variants of Sketch

problems from the domain of automatic feedback generation for introductory
programming assignments [7]. Each benchmark corresponds to an incorrect pro-
gram submitted by a student and the goal of the synthesizer is to find a small
variation of the program that behaves correctly on a set of test cases. We select
the 6/11 benchmarks from the tool Qlose [7] for which (i) our implementation
can support all the features in the program, and (ii) our data flow analysis
identifies at least one variable that can be tracked modularly. Of the remaining
benchmarks, 3/11 do not contain variables that can be tracked modularly, and
2/11 call auxiliary functions that cannot be translated into Sketch. For each

20 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

Table 1: Effectiveness of different solvers. SAT (resp. UNSAT) denotes the num-
ber of benchmarks for which solver could find a solution to the benchmarks (resp.
prove no solution existed) while TO denotes the number of timeouts.

Polynomials Invariants Program repair
Solver Solved SAT UNSAT TO SAT UNSAT TO SAT UNSAT TO

Unary 69/181 12 4 65 5 0 41 48 0 6
Binary 127/181 70 6 5 17 0 29 34 0 20
Unary-p 169/181 73 5 3 41 2 3 48 0 6

Unary-p-inc 172/181 73 6 2 41 2 3 50 0 4

program, we consider the original problem and two variants where the integer
inputs are multiplied by 10 and 100, respectively. Further, for each program vari-
ants, we impose an assertion specifying that the distance between the original
program and the repaired program is within a certain bound. We select three
different bounds for each program: the minimum cost c, c+ 100, and c+ 200.

8.2 Performance of Unary-p

Table 1 summarizes our comparison. First, we compare the performance of
Unary-p and Unary. We use P = {2, 3, 5, 7, 11, 13, 17}, which is enough for
Unary-p to always find correct solutions (we verify the correctness of a solution
by instantiating the hole values in the original sketch programs). Unary can only
solve 69/181 benchmarks while Unary-p can solve 169/181. Figure 7a shows a
scatter plot (log scale) of the solving times for the two techniques: each point
below the diagonal line denotes a benchmark on which Unary-p was faster than
Unary. Points on the extreme right-hand side of the plot denote timeout for
Unary. When both solvers terminate, Unary-p (avg. 1.7s) is 6.1X (geometric
mean) faster than Unary (avg. 25.0s).

Next, we compare the performance of Unary-p and Binary (Figure 7b). On
the 64 easier benchmarks that Binary can solve in less than 1 second, Binary

(avg. 0.55s) outperforms Unary-p (avg. 2.32s), but Unary-p still has reason-
able performance. On the 49 benchmarks that Binary can solve between 1 and
10 seconds, Unary-p (avg. 3.5s) is on average 1.9X faster than Binary (avg.
6.9s). Most interestingly, for the 14 harder benchmarks for which Binary takes
more than 10 seconds, Unary-p (avg. 5.7s) is on average 15.9X faster than Bi-

nary (avg. 90.9s). Remarkably, Unary-p solved 43 of the benchmarks (in less
than 8s each) for which Binary timed out4, and Unary-p only timed out for
two benchmarks that Binary could solve in less than a second and one bench-
mark that Binary could solve in 260s. Finally, we would like to highlight that
for 41/208 benchmarks, even Unary outperforms Binary. As expected from

4 During our experiment, we observed that Binary incorrectly reported UNSAT for
10 satisfiable benchmarks. We reported these benchmarks as timeouts and have
contacted the authors of Sketch to address the issue.

Solving Program Sketches with Large Integer Values 21

the discussion throughout the paper, these are benchmarks typically involving
complex operations but not involving overly large numbers.

We can now answer Q1. First, Unary-p consistently outperforms Unary

across all benchmarks. Second, Unary-p outperforms Binary on hard-to-
solve problems and can solve problems that Binary cannot solve—
e.g., Unary-p solved 28/46 invariant problems that Sketch could not solve.
Unary-p and Binary have similar performance on easy problems.

Comparison to full SMT encoding For completeness, we also compare our ap-
proach to a tool that uses SMT solvers to model the entire synthesis problem.
We choose the state-of-the-art SMT-based synthesizer Rosette [23] for our
comparison. Rosette is a programming language that encodes verification and

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

Rosette (ms)

B
in

a
r
y

(m
s)

Fig. 6: Rosette vs Binary

synthesis constraints written in a domain-
specific language into SMT formulas that
can be solved using SMT solvers.

We only run Rosette on the set of
Polynomials because Rosette does sup-
ports that theory of integer, but does not
have native support for loops, so there
is no direct way to encode Invariants
and Program Repair benchmarks. To our
knowledge, Rosette provides a way to
specify the number k it uses to model in-
tegers and reals as k-bit words, but the
user has no control over how many bits
it uses for unknown holes specifically. So
we evaluate 27 instead of 81 variants of the polynomial synthesis problem on
Rosette, i.e., we consider different numbers of cbits.

Figure 6 shows the running times (log scale) for Rosette and Binary with
cbits=6. Rosette successfully solved 16/27 benchmarks and it terminates
quickly (avg. 2.9s) when it can find a solution. However, Rosette times out
on 11 benchmarks for which Binary terminates. The timeouts are due to the
fact that Rosette employs full SMT encodings that combine multiple theories
while Binary uses a SAT solver that is only modified to accommodate SMT-like
integer constraints. Since we now know full SMT encodings are not as general
and efficient as the encodings used in Sketch, we will only evaluate the effec-
tiveness of our technique based on comparison with Binary.

Finally, we tried applying our prime-based technique to Rosette and, as
expected, the technique is not beneficial due to the binary encoding of numbers
in SMT, and causes all benchmarks to timeout. To summarize, (i) SMT solvers
cannot efficiently handle the synthesis problems considered in this paper, and
(ii) our technique is better suited for SAT solvers than SMT solvers.

8.3 Performance of Incremental Solving

Our implementation of the incremental solver Unary-p-inc first attempts to
find a solution with the prime set P = {2, 3, 5, 7}. If the solver returns a correct

22 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

10
3

10
4

10
5 TO

10
3

10
4

10
5

Unary (ms)

U
n
a
r
y
-p

(m
s)

Polynomials
Repair

Invariants

(a) Unary vs Unary-p

10
3

10
4

10
5 TO

10
3

10
4

10
5

Binary (ms)

U
n
a
r
y
-p

(m
s)

Polynomials
Repair

Invariants

(b) Binary vs Unary-p

Fig. 7: Performance of Unary, Binary, and Unary-p.

103 104 105 TO

103

104

105

Unary-p-inc (ms)

U
n
a
r
y
-p

(m
s)

Polynomials
Repair

Invariant

Fig. 8: Unary-p-inc vs Unary-p

solution, Unary-p-inc terminates. Oth-
erwise, Unary-p-inc incrementally adds
the next prime to P until it finds a
correct solution, it proves there is no
solution, or it times out. Unary-p-

inc is 25.2% (geometric mean) slower
than Unary-p (Figure 8 (log scale)).
Unary-p-inc can solve three bench-
marks for which both Unary-p and
Binary timed out. To answer Q3,
Unary-p-inc and Unary-p have
similar performance.

8.4 Varying the Prime Number Set P

In this experiment, we evaluate how different prime number sets affect Unary-p.
We consider the 5 increasing sets of primes: P5 = {2, 3, 5}, P7 = {2, 3, 5, 7},

P11 = {2, 3, 5, 7, 11}, P13 = {2, 3, 5, 7, 11, 13}, and P17 = {2, 3, 5, 7, 11, 13, 17}.
Figure 9a (log scale) shows the running times for all the polynomial benchmarks
with cbits=7 (showing all benchmarks would clutter the plot). The points where
the lines change from dashed to solid denote the number of primes for which the
algorithm starts yielding correct solutions. As expected, a smaller set of primes
leads to faster solving times as the resulting constraints are smaller and fewer
bits are needed for encoding intermediate values. The runtime on average grows
with the increasing size of the primes. For example, across all benchmarks, using
P17 takes 23% longer on average than using P11. To answer Q3, Unary-p is
slower when using increasingly large sets of prime.

In terms of correctness, we find that smaller prime sets often yield incorrect
solutions (P5 (37% correct), P7 (70%), P11 (86%), P13 (97 %), and P17 (100%)
because there is not enough discriminative power with fewer primes and the

Solving Program Sketches with Large Integer Values 23

[2 3 5] [2 3 5 7] [2−11] [2−13] [2−17]

10
3

10
4

prime set

so
lv

in
g

ti
m

e
(m

s)

(a) Larger sets of primes

[2−17] [11 17 19 23] [31 41 47] [251 263]

10
3

10
4

10
5

prime set

so
lv

in
g

ti
m

e
(m

s)

(b) Larger primes

Fig. 9: Performance for different sets of prime numbers.

solutions may overfit to the smaller set of intermediate values. It is interesting
to note that even prime sets of intermediate size often lead to correct solutions
in practice, which explains some of the speedups observed in the incremental
synthesis algorithm. To answer Q4, Unary-p is able to synthesize correct
solutions even with intermediate sized sets of primes.

Changing Magnitude of Primes We also evaluate the performance of Unary-

p when using primes of different magnitudes. We consider the sets of primes
{11, 17, 19, 23}, {31, 41, 47}, and {251, 263}, which define similar integer ranges,
but pose different trade-offs between the number of used primes and their sizes—
e.g., the set {251, 263} only uses two very large primes. Since the different sets
cover similar integer ranges, they all produce correct solutions. Figure 9b (log
scale) shows the running time of Unary-p for the same benchmarks as Figure 9a.
Larger prime sets of smaller prime values require less time to solve than smaller
prime sets of larger prime values. This result is expected since, in the unary
encoding of numbers, representing larger numbers requires more bits.

8.5 Size of SAT Formulas

In this experiment, we compare the sizes of the intermediate SAT formulas gen-
erated by Unary-p and Unary. Figure 10a shows a scatter plot (log scale) of
the number of clauses of the largest intermediate SAT query generated by the
CEGIS algorithm for the two techniques. We only plot the instances in which
Unary was able to produce at least a SAT formula. Unary produces SAT for-
mulas that are on average 19.3X larger than those produced by Unary-p. To
answer Q5, as predicted by our theory, Unary-p produces significantly
smaller SAT queries than Unary.

Performance vs Size of SAT Queries We also evaluate the correlation between
synthesis time and size of SAT queries. Figure 10b plots the synthesis times of
both solvers against the sizes of the SAT queries. It is clear that the synthesis

24 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

10
6

10
7

formula size Unary

fo
rm

u
la

si
ze

U
n
a
r
y
-p

Polynomials
Repair

Invariant

(a) Size: Unary-p vs Unary

10
5

10
6

10
7

10
8

10
3

10
4

10
5

formula size

ti
m

e
(m

s)

Unary

Unary-p

(b) Performance vs size

Fig. 10: SAT formulas sizes and performance.

time increases with larger SAT queries. The plot illustrates how the solving time
strongly depends on the size of the generated formulas.

9 Related Work

Program Sketching Program sketching was designed to automatically synthesize
efficient bit-vector manipulations from inefficient iterative implementations [21].
The Sketch tool has since been engineered to support complex language fea-
tures and operations [19]. Thanks to its simplicity, sketching has found wide
adoption in applications such as optimizing database queries [3], automated
feedback generation [18], program repair [7], and many others. Our work further
extends the capabilities of Sketch in a new direction by leveraging number
theory results. In particular, our technique allows Sketch to handle sketches
manipulating large integer numbers. To the best of our knowledge, our technique
is the first one that can solve many of the benchmarks presented in this paper.

Uses of Chinese Remainder Theorem The Chinese Remainder Theorem and its
derivative corollaries have found wide application in several branches of Com-
puter Science and, in particular, in Cryptography [11, 26].

The idea of using modular arithmetic to abstract integer values has been
used in program analysis. Since modular fields are finite, they can be used as
an abstract domain for verifying programs manipulating integers [5]—e.g., the
abstract domain can track whether a number is even or odd. Our work extends
this idea to the domain of program synthesis and requires us to solve several
challenges. First, when used for verifying programs, the modular abstraction is
used to overapproximate the set of possible values of the program and does not
need to be precise. In particular, Clark et al. [5] allow program operations that
are in the IMP language but not in the IMP-MOD language and lose precision when
modeling such operations—e.g., when performing the assignment x = x/2 the
value of x mod 2 can be either 0 or 1. Such imprecision is fine in program analysis

Solving Program Sketches with Large Integer Values 25

since the abstraction is used to show that a program does not contain a bug—
i.e., even in the abstract domain, the problem behaves fine. In our setting, the
problem is opposite as we use the abstraction to simplify the synthesis problem
and provide a theory for when the modular and integer semantics are equivalent.

Pruning Spaces in Program Synthesis Many techniques have been proposed to
prune large search space of possible programs [14]. Enumerative synthesis tech-
niques [24, 12, 13, 17] enumerate programs in a search space and avoid enumer-
ating syntactically and semantically equivalent terms. Some synthesizers such
as Synquid [16] and Morpheus [10] use refinement types and first-order formu-
las over specifications of DSL constructs to refute inconsistent programs. Re-
cently, Wang et al. [25] proposed a technique based on abstraction refinement
for iteratively refining abstractions to construct synthesis problems of increasing
complexity for incremental search over a large space of programs.

Instead of pruning programs in the syntactic space, our technique uses mod-
ular arithmetic to prune the semantic space—i.e., the complexity of verifying the
correctness of the synthesized solution—while maintaining the syntactic space
of programs. Our approach is related to that of Tiwari et al. [22], who present a
technique for component-based synthesis using dual semantics—where syntactic
symbols in a language are provided two different semantics to capture differ-
ent requirements. Our technique is similar in the sense that we also provide an
additional semantics based on modular arithmetic. However, we formalize our
analysis based on number theory results and develop it in the context of general-
purpose Sketch programs that manipulate integer values, unlike Tiwari et al.’s
work that is developed for straight-line programs composed of components.

Synthesis for Large Integer Values Abate et al. propose a modification of the
Cegis algorithm for solving syntax-guided synthesis (SyGuS) problems with
large constants [1]. SyGuS differs from program sketching in how the synthesis
problem is posed and in the type of programs that can be modeled. In particular,
in SyGuS one can only describe programs representing SMT formulas and the
logical specification for the problem can only relate the input and output of the
program—i.e., there cannot be intermediate assertions within the program. The
problem setup and the solving algorithms proposed in this paper are orthogonal
to those of Abate et al. First, we focus on program sketching, which is orthog-
onal to SyGuS as sketching allows for richer and more generic program spaces
as well as richer specifications. While it is true that certain synthesis problems
can be expressed both as sketches and as SyGuS problems, this is not the case
for our benchmarks programs, which use loops, arrays and non-linear integer
arithmetic, all of which are not supported by SyGuS. Second, our technique is
motivated by how Sketch encodes and solves program sketches through SAT
solving. While the traditional Sketch encoding can explode for large constants,
the same encoding allows Sketch to solve program sketches involving complex
arithmetic and complex programming constructs. The algorithm proposed by
Abate et al. iteratively builds SMT (not SAT) formulas that are required to
be in a decidable logical theory. Such an encoding only works for the restricted
programming models used in SyGuS problems.

26 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

References

1. A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen. Counterexample
guided inductive synthesis modulo theories. In CAV , Lecture Notes in Computer
Science. Springer, 2018.

2. R. Alur, R. Bodík, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 1–8, 2013.

3. A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed ap-
plications with query synthesis. In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’13, pages
3–14, 2013.

4. L. N. Childs, editor. The Chinese Remainder Theorem, pages 253–281. Springer
New York, New York, NY, 2009.

5. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Trans. Program. Lang. Syst., 16(5):1512–1542, Sept. 1994.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

7. L. D’Antoni, R. Samanta, and R. Singh. Qlose: Program repair with quantitative
objectives. In CAV (2), volume 9780 of Lecture Notes in Computer Science, pages
383–401. Springer, 2016.

8. S. de Oliveira, S. Bensalem, and V. Prevosto. Polynomial invariants by linear
algebra. In C. Artho, A. Legay, and D. Peled, editors, Automated Technology
for Verification and Analysis, pages 479–494, Cham, 2016. Springer International
Publishing.

9. P. Dusart. Estimates of ψ,ϑ for large values of x without the riemann hypothesis.
Math. Comput., 85(298):875–888, 2016.

10. Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri. Component-
based synthesis of table consolidation and transformation tasks from examples. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, pages 422–436, New York, NY, USA,
2017. ACM.

11. J. Grobchadl. The chinese remainder theorem and its application in a high-speed
rsa crypto chip. In Proceedings of the 16th Annual Computer Security Applications
Conference, ACSAC ’00, pages 384–, Washington, DC, USA, 2000. IEEE Computer
Society.

12. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 317–330, 2011.

13. S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using
examples. Commun. ACM, 55(8):97–105, 2012.

14. S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and Trends
in Programming Languages, 4(1-2):1–119, 2017.

15. G. J. O. Jameson. The Prime Number Theorem. London Mathematical Society
Student Texts. Cambridge University Press, 2003.

Solving Program Sketches with Large Integer Values 27

16. N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis from polymor-
phic refinement types. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 522–538, 2016.

17. R. Singh and S. Gulwani. Transforming spreadsheet data types using examples.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 343–356, 2016.

18. R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013, pages 15–26, 2013.

19. A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.
20. A. Solar-Lezama, C. G. Jones, and R. Bodík. Sketching concurrent data structures.

In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pages 136–148,
2008.

21. A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial
sketching for finite programs. SIGOPS Oper. Syst. Rev., 40(5):404–415, Oct. 2006.

22. A. Tiwari, A. Gascón, and B. Dutertre. Program synthesis using dual interpre-
tation. In Automated Deduction - CADE-25 - 25th International Conference on
Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 482–
497, 2015.

23. E. Torlak and R. Bodik. A lightweight symbolic virtual machine for solver-aided
host languages. In Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, pages 530–541, New
York, NY, USA, 2014. ACM.

24. A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin, and
R. Alur. Transit: Specifying protocols with concolic snippets. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’13, pages 287–296, 2013.

25. X. Wang, I. Dillig, and R. Singh. Program synthesis using abstraction refinement.
PACMPL, 2(POPL):63:1–63:30, 2018.

26. S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. Rsa speedup with chinese remainder
theorem immune against hardware fault cryptanalysis. IEEE Trans. Comput.,
52(4):461–472, Apr. 2003.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

28 Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni

