
Automatic Program Inversion using Symbolic Transducers

Qinheping Hu

University of Wisconsin-Madison, USA

qhu28@wisc.edu

Loris D’Antoni

University of Wisconsin-Madison, USA

loris@cs.wisc.edu

Abstract

We propose a fully-automated technique for inverting func-

tional programs that operate over lists such as string encoders

and decoders. We consider programs that can be modeled

using symbolic extended finite transducers (s-EFTs), an ex-

pressive model that can describe complex list-manipulating

programs while retaining several decidable properties. Con-

cretely, given a program P expressed as an s-EFT, we pro-

pose techniques for: 1) checking whether P is injective and,

if that is the case, 2) building an s-EFT P−1 describing its

inverse. We first show that it is undecidable to check whether

an s-EFT is injective and propose an algorithm for checking

injectivity for a restricted, but a practical class of s-EFTs. We

then propose an algorithm for inverting s-EFTs based on the

following idea: if an s-EFT is injective, inverting it amounts

to inverting all its individual transitions. We leverage recent

advances in program synthesis and show that the transition

inversion problem can be expressed as an instance of the

syntax-guided synthesis framework. Finally, we implement

the proposed techniques in a tool called GENIC and show that

GENIC can invert 13 out of 14 real complex string encoders

and decoders, producing inverse programs that are almost

identical to manually written ones.

CCS Concepts • Theory of computation → Formal lan-

guages and automata theory

Keywords Extended Symbolic Transducers, Program Inver-

sion, GENIC

1. Introduction

Program inversion is an old but everlasting topic in computer

science. Already in 1978, Dijkstra was investigating domain-

specific techniques for manually inverting simple array-

manipulating programs [11]. Besides being intriguing and

foundational, the problem of efficiently and automatically

producing correct inverse programs has practical applications

in many fields of computer science, such as data extraction,

transformation, compression, and encryption.

Consider the task of writing a string encoder such as

BASE64 and the corresponding decoder—i.e., two programs

that transform a plain text from one format to another. After

successfully writing the encoder, the programmer also has to

write a decoder and test whether the two programs invert each

other. Since these programs are very similar, the programmer

is repeating the same work twice and is more likely to

introduce mistakes. In fact, mistakes in this type of programs

are common and, in the past, buggy string encoders have

caused large-scale security vulnerabilities [19].

Inspired by such scenarios, we investigate the problem

of completely automated program inversion. Since the first

Dijkstra’s effort, this problem has been investigated in several

areas and many techniques have been proposed. However,

these techniques are only effective on simple programs [5, 12,

14, 16–18] or are only semi-automated [22]. Moreover, not

all such techniques guarantee the soundness of the generated

inverse program. We propose a sound and fully automated

approach for inverting programs that manipulate lists, such

as string encoders and CSV file transformations.

Programs as transducers Our approach is formal and lays

its foundations in the theory of finite state automata and finite

state transducers—i.e., automata with outputs. In this paper,

we focus on programs that can be modeled using symbolic

extended finite transducers (s-EFTs), a transducer model

that can capture complex manipulating programs, such as

real encoders, while retaining several decidable properties.

However, the paradigm we propose could be extended to

more powerful models such as tree transformations using

trees and visibly push-down transducers [4, 21]. s-EFTs

extend traditional transducer models in two ways. First, s-EFT

transitions are labeled with predicates and functions drawn

from decidable first-order theories (e.g. Presburger arithmetic

over the integers). Thanks to this feature, s-EFTs can model

transformations over lists that contain elements belonging

to complex and potentially infinite domains. Second, s-EFT

transitions can read multiple adjacent input symbols and use

the inputs to produce multiple adjacent output symbols. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain
ACM. 978-1-4503-4988-8/17/06...$15.00
http://dx.doi.org/10.1145/3062341.3062345

376

example, consider the following transition t of an s-EFT A

operating over lists of integers.

p
x1≥0∧x2≥0/[x2,x1−1]
−−−−−−−−−−−−−−→

2
q

When in state p and reading a list (e.g., [1, 4, 6, 10]), the s-

EFT A checks whether the first two elements of the list (e.g.,

1 and 4) are greater than 0, then appends two numbers to the

output list (e.g., 5 and 0), moves the control to the state q, and

continues reading the rest of the list (e.g., [6, 10]). Despite

the generality of this model, if the predicates appearing in

the transitions are conjunctions of unary predicates, it is

decidable to check whether two s-EFTs describe the same

list transformation. This property was used by D’Antoni and

Veanes to prove the correctness of complex implementations

of encoders and decoders such as BASE64 [7]. In this paper,

we move a step further and ask the following question. Given

an s-EFT A, can we construct an s-EFT A−1 that computes

the inverse transformations of A? While this problem has

been studied for simple transducer models [4, 25], automatic

inversion of s-EFTs is a much more challenging problem due

to the use of arbitrary first order theories.

Proving transducer injectivity When trying to automati-

cally invert a transducer A, a natural question arises: is the

transducer A actually invertible? A necessary condition for

invertibility is that A computes an injective function. We

study the problem of checking whether an s-EFT is injective

and show that, in general, this problem is undecidable. We

then propose an algorithm for checking injectivity of a re-

stricted but practical class of s-EFTs. To check injectivity of

an s-EFT A, we compute predicates describing the output of

each transition and use them to construct an automaton AO

describing the output language of A. Our restriction requires

all the predicates in AO to be Cartesian—i.e., the predicates

are expressible as conjunction of unary predicates—and we

provide an algorithm for checking whether a predicate is

Cartesian. We then prove that an s-EFT is injective iff, for

each possible list, there exists at most one accepting path in

its output automaton AO; we provide an algorithm for check-

ing this property. We show that Cartesian s-EFTs can still

describe complex programs.

Inverting transducers We propose an algorithm for invert-

ing s-EFTs based on the following idea: if an s-EFT T is

injective, inverting T amounts to inverting all its individual

transitions. For example, the transition t′ that inverts the tran-

sition t from the earlier example is the following.

p
y1≥0∧y2≥−1/[y2+1,y1]
−−−−−−−−−−−−−−−→ q

To invert a transition we need to compute the predicate

appearing in the guard and the functions generating the output.

The predicate for the guard can be computed symbolically

using quantifier elimination. For example, the guard of t′ is

the quantifier-free formula equivalent to

∃x1, x2.x1 ≥ 0 ∧ x2 ≥ 0 ∧ y1 = x2 ∧ y2 = x1 − 1.

text M a n

ASCII 77 (#x4D) 97 (#x61) 110 (#x6E)
bit pattern 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0

index 19 22 5 46
BASE64 T W F u

Figure 1: Example BASE64 encoding from Wikipedia.

Computing the output components requires inverting func-

tions expressed in an arbitrary first order theory. We for-

malize this problem and show that it can be naturally en-

coded in the framework of syntax-guided synthesis (SYGUS).

For example, the output functions g1(y1, y2) = y2 + 1 and

g2(y1, y2) = y1 of the inverted transition t′ are solutions of

the SYGUS specification

ϕ(g1, g2) = ∀x1, x2.x1 ≥ 0 ∧ x2 ≥ 0
−→ g1(x2, x1 − 1) = x1 ∧ g2(x2, x1 − 1) = x2.

The tool GENIC We implemented our techniques in a

programming language, GENIC, for which the semantics

is given using s-EFTs. We exploit some of the domain

knowledge and language features of GENIC to propose

synthesis techniques that improve the performance SYGUS

instances generated when inverting transitions—e.g., we

synthesize auxiliary functions to speed up the synthesis. We

evaluate the effectiveness of GENIC on 14 real encoders and

decoders, and 40 synthetic programs, with size ranging from

6 to 131 line of code. GENIC is able to automatically invert

13 of the real programs and produces small inverses, which

are substantially identical to the manually written ones.

Contributions In summary, our contributions are:

• GENIC, a language for the problem of automatically

inverting list manipulating programs that are expressible

as s-EFTs (§ 3).

• A formal study of the problem of checking injectivity

of s-EFTs, including a proof of undecidability for the

general case and an algorithm for checking injectivity for

a practical subclass of s-EFTs (§ 4).

• A formal study of the problem of inverting s-EFTs, includ-

ing an algorithm for inverting injective s-EFTs (§ 5), and

a concrete instantiation of the algorithm in the framework

of Syntax Guided Synthesis (§ 6).

• A comprehensive evaluation of GENIC on both real and

synthetic benchmarks (§ 7).

A long version of this paper containing all the proofs has

been submitted as supplementary material.

2. Motivating Example

We use the BASE64 encoder and its variants to illustrate how

GENIC works. The standard encoding BASE64 is used to

translate binary data in textual format. A BASE64 encoder

transforms sequences of bytes, also called octets, into se-

quences of 6-bit characters. This is done by reading 3 charac-

ters at a time, splitting the resulting sequence of 24 bits into

377

1 // Axuiliary functions

2 fun E (x: x <= #x40) :=

3 (ite (x <= #x19) (x + #x41)

4 (ite (x <= #x33) (x + #x47)

5 (ite (x <= #x3d) (x - #x04)

6 (ite (x == #x3e) #x2b #x2f))))

7 fun B h l x := (x << (7 - h)) >> (7 - h + l)

8 // List transformations

9 trans B64E (l: (BitVec 8) list) : (BitVec 8) :=

10 match l with

11 // (input list) when (predicate) -> (output list)

12 | x::y::z::tail when true ->

13 E (B 7 2 x) ::

14 E (((B 1 0 x) << #x04) | (B 7 4 y)) ::

15 E (((B 4 0 y) << 2) | (B 7 6 z)) ::

16 E (B 5 0 z) :: B64E(tail)

17 | x::y::[] when true ->

18 E (B 7 2 x) ::

19 E (((B 1 0 x) << 4) | (B 7 4 y)) ::

20 E ((B 4 0 y) << 2) :: #x3d :: []

21 | x::[] when true ->

22 E (B 7 2 x)) ::

23 E ((B 1 0 x) << 4) :: #x3d :: #x3d :: []

24 | [] when true -> []

25 // Operations on the list transformation

26 isInjective B64E

27 invert B64E

Figure 2: GENIC program for the BASE64 encoder. #x3d is

the ASCII code of the symbol ‘=’.

groups of 6 bits, and applying a character mapping to each

6-bit number. The character mapping receives as input values

between 0 and 63 to produce safe ASCII characters—e.g.,

letters, numbers, ‘+‘, ‘/‘ and ‘=‘. If the source stream is not

divisible by 3 then the last four output characters will con-

tain padding characters ‘=‘ to make it cleanly divisible. An

example of this encoding is given in Figure 1.

The GENIC program showed in Figure 2 implements the

standard BASE64 encoder. The program starts by defining two

auxiliary functions (lines 2-7): the function E performs the

character mapping illustrated in the last two lines of Figure 1

and the function B extracts the bits between positions l and

h in a bit-vector x. The function B64E performs the actual

list transformation: it takes as input a list of bytes l and

uses pattern-matching to decide which rule to fire. The first

rule (lines 12-16) fires when the input list l contains at least

3 elements. This rule reads the first three characters of l;

it outputs the four ASCII characters corresponding to the

BASE64 encoding of the consumed characters, and it appends

to the output the result of recursively invoking B64E on the

remainder of the list. The other three rules are fired when l

has fewer than 3 elements. Notice that the second and third

rules add the padding character ‘=’—i.e., #x3d—to make the

length of the output divisible by 4.

In the last two lines of the program, GENIC checks whether

the list transformation B64E is injective and, if that is the

case, GENIC computes the inverse of B64E. A skeleton of the

GENIC program B64D produced by invert B64E is depicted

in Figure 3. In this case, GENIC also synthesizes an auxiliary

function D that inverts our original auxiliary function E and

uses it in the body of the program B64D, making the inverted

1 // We omit the detail in auxiliary functions

2 fun D (x:...) := ... // Synthesized by genic

3 fun B h l x := ...

4 fun pred x := ... // Synthesized by genic

5 ===

6 // Synthesized by genic

7 trans B64D (l: (BitVec 8) list) : (BitVec 8) :=

8 match l with

9 | ...

10 | x::y::z::w::[] when (and (pred x) (pred y)

11 (z == #x3d) (w == #x3d)) ->

12 ((D x) << #x02) | (B #x05 #x04 (D y)) :: []

13 | ...

Figure 3: Skeleton of the implementation of the BASE64

decoder synthesized by GENIC.

program more natural to read. GENIC takes approximately 2

seconds to prove that B64E is injective and approximately 10

seconds to compute its inverse.

We now introduce a variant of the standard BASE64 and

show how a small change in the encoder can trigger non-

trivial changes in the corresponding decoder. The modified

BASE64 for XML tokens differ from the standard BASE64

because it uses a different mapping function E, which maps

values 62 and 63 to characters ‘.’ and ‘-’ respectively, and

it does not use padding characters. It is easy to modify the

program in Figure 2 to reflect these changes. However, this

small change in the encoder triggers non-trivial changes in

the corresponding decoder. For example, for the skeleton

of the decoder presented in Figure 3, we need to modify

the function D and the predicate pred to operate over a

different set of symbols, and we need to change the pattern

of the rule in line 10 to read only two symbols. Despite this

non-trivial change, GENIC can prove the injectivity of the

modified encoder and compute its inverse in approximately

10 seconds, relieving the programmer from the burden of

manually writing a correct modified decoder.1

3. The GENIC Language

The language GENIC is designed with the following goals in

mind. First, GENIC should be expressive enough to model

useful and practical list manipulating programs. Second, it

should be possible to automatically check whether GENIC

programs are injective and to invert them. We introduce the

language constructs of GENIC and simultaneously define

their formal semantics using s-EFTs.

3.1 Alphabet Theories

GENIC programs and s-EFTs manipulate lists that contain

elements from complex domains. We assume a background

1 To better appreciate the complexity of the problem the reader can look at
the Javascript implementation of BASE64 at http://bit.ly/2eIJeSe. To
adopt the change proposed in our motivating example, one will need to 1)
modify lines 67-69 and 83-85 since now there are no = characters, 2) add
a mechanism to detect the early end of input and react appropriately (e.g.,
change lines 79 and 92), 3) modify the decoding table in line 16. We believe
that these changes are non-trivial and error-prone.

378

http://bit.ly/2eIJeSe

universe D with built-in function and relation symbols. The

universe D is multi-typed with Dτ denoting the sub-universe

of elements of type τ . We use λ-expressions for representing

anonymous functions that we call λ-terms. A λ-term λx.ϕ(x)
of type σ→ BOOL is called a σ-predicate or a predicate over

σ. We use σi to denote the Cartesian product of σ i times—

i.e., σ0 = ∅, σ1 = σ and σi+1 = σ × σi.

An alphabet theory is given by a set Ψ of terms that

is closed under Boolean operations (i.e., the theory forms

a Boolean algebra), substitution, equality, and if-then-else

terms. Unless stated differently, we assume that the alphabet

theory Ψ is decidable—i.e., checking satisfiability of formu-

las ϕ ∈ Ψ, IsSat(ϕ), is decidable. The alphabet theory is

recursively enumerable if the set Ψ is recursively enumerable.

We use [[ϕ]]⊆Dσ to denote the set of all values that satisfy ϕ;

ϕ is valid, IsValid(ϕ), when [[ϕ]]=Dσ . GENIC currently sup-

ports the theories of bit-vector arithmetic and linear integer

arithmetic, which are ones supported by SYGUS solvers.

3.2 Auxiliary Functions

The first part of a GENIC program contains auxiliary partial

functions defined using terms in the alphabet theory. Auxil-

iary functions can be used as within the list transformations

and we will discuss later how they can speed up synthesis.

Example 3.1. The GENIC program presented in Figure 2

contains two auxiliary functions (lines 2-7). The partial func-

tion E maps characters in the range [#00-#3f] to the corre-

sponding BASE64 symbols and is undefined on characters

outside the range [#00-#3f]. The function B extracts the bits

between position h and l in a bit-vector x. In the following

examples we use bhl (x) and ⌈x⌉ to refer to the terms in the

alphabet theory D corresponding to the GENIC functions B

h l x and E x, respectively.

3.3 List Transformations

The core constructs of GENIC are list-to-list transformations,

for which the semantics is given in terms of Symbolic

Extended Finite Transducers (s-EFTs).

Definition 3.2. An Extended Symbolic Finite Transducer

(s-EFT) with input type σ and output type γ is a tuple

A = (Q, q0,∆) where:

• Q is a finite set of states and q0 ∈ Q is the initial state.

• ∆ is a set of transitions of the form r = (p, ℓ, ϕ, f̂ , q)

(denoted p
ϕ/f̂
−−→

ℓ
q) such that p ∈ Q, q ∈ Q ∪ {•}, ℓ ≥ 1

is the lookahead of r, and

ϕ, the guard of r, is a predicate over σℓ;

f̂ , the output of r, is a list of functions [f0, . . . , fn]
such that n ≥ 0 and for every i, fi : (σ

ℓ → γ).

The lookahead ofA is the maximum of all lookaheads of rules

in ∆. An s-EFT where all the rules output the empty list is an

Extended Symbolic Finite Automaton (s-EFA). For s-EFAs,

we omit the output component from the transitions.

A finalizer is a rule with target state q = • and is a

generalization of the notion of final state. A finalizer with

lookahead ℓ is used when the end of the input sequence has

been reached with exactly ℓ input elements remaining. We

use the following abbreviated notation for rules, by omitting

explicit λ’s. We write

p
ϕ(x̄)/[f0(x̄),...,fk(x̄)]
−−−−−−−−−−−−−→

ℓ
q for p

λx̄.ϕ(x̄)/λx̄.[f0(x̄),...,fk(x̄)]
−−−−−−−−−−−−−−−−−→

ℓ
q,

where ϕ and fi are terms whose free variables are among

x̄ = (x0, . . . , xℓ−1). We often abbreviate [f0(x̄), . . . , fk(x̄)]
with f̄(x̄).

In the following we explain how GENIC programs are

translated into s-EFTs. In GENIC a list transformation is

declared using the signature trans p and it represents a state

p of an s-EFT together with the corresponding transitions out

of p. Transformations contain two kinds of matching rules.

The first kind is of the form

x0:: . . . ::xn::tail when ϕ(x0, . . . , xn) ->
f1(x0, . . . , xn):: . . . ::fk(x0, . . . , xn)::p

′(tail)

and it corresponds to an s-EFTs transition of the form

p
ϕ(x0,...,xn)/[f0(x0,...,xn),...,fk(x0,...,xn)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

n+1
p′.

The second kind of matching rules is of the form

x0:: . . . ::xn::[] when ϕ(x0, . . . , xn) ->
f0(x0, . . . , xn):: . . . ::fk(x0, . . . , xn)::[]

and it corresponds to an s-EFTs finalizer transition

p
ϕ(x0,...,xn)/[f0(x0,...,xn),...,fk(x0,...,xn)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

n+1
•

Intuitively, rules that pattern-match against a list of fixed

length correspond to finalizer transitions. The predicates

and functions appearing in GENIC rules are required to be

well-typed and to be elements of the alphabet theory. The

initial state of the s-EFT is the one corresponding to the

transformation for which the user wants to compute the

inverted program—i.e., the name appearing after the keyword

invert.

Example 3.3. The s-EFT TB64E = ({p}, p,∆B64E) de-

scribes the BASE64 encoder presented in Figure 2. TB64E

operates over the theory of bit-vectors and has BITVEC 8 as

both its input and output type. The set ∆B64E contains the

following transitions. ⊤ is the true predicate.

p
⊤/[⌈b72(x0)⌉,⌈(b

1
0(x0)≪4)|b74(x1)⌉,⌈(b

3
0(x1)≪2)|b76(x2)⌉,⌈b

5
0(x2)⌉]

−−→
3

p

p
⊤/[]
−−−→

0
• p

⊤/[⌈b72(x0)⌉, ⌈b
1
0(x0)≪4⌉, ‘=’, ‘=’]

−−−−−−−−−−−−−−−−−−−−−−→
1

•

p
⊤/[⌈b72(x0)⌉, ⌈(b

1
0(x0)≪4)|b74(x1)⌉, ⌈b

3
0(x1)≪2⌉, ‘=’]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
2

•

The state p corresponds to the list transformation function

B64E and, since the program asks to invert B64E, the state p

is also the initial state.

379

We now define the semantics of s-EFTs and therefore

of GENIC programs. In the remainder of the section, let

A = (Q, q0,∆) be a fixed s-EFT with input type σ and output

type γ. For each rule in ∆ we define the set of corresponding

non-symbolic rules as follows.

[[p
ϕ(x0,...,xℓ−1)/[f0(x0,...,xℓ−1),...,fk(x0,...,xℓ−1)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ℓ
q]]

def
=

{p
ā/[t0,...,tk]
−−−−−−−→ q | |ā| = ℓ ∧ ā ∈ [[ϕ]] ∧ ti = [[fi]](ā)}

Intuitively, a rule with lookahead ℓ reads ℓ adjacent input

symbols ā and produces a sequence of output symbols

t0, . . . , tk by applying the output functions in f̄ to ā.

In the following, let [[∆]]
def
=

⋃
r∈∆[[r]] and let s1 ·s2 denote

the concatenation of two sequences s1 and s2.

Definition 3.4. For u ∈ Σ∗, v ∈ Γ∗, q ∈ Q, q′ ∈ Q ∪ {•},

define q
u/v
−−→→A q′ as follows: there exists n ≥ 0 and

{ri | ri = pi
ui/vi
−−−→ pi+1 ∧ i ≤ n} ⊆ [[∆]] such that

u = u0 · u1 · · ·un, v = v0 · v1 · · · vn, q = p0, and

q′ = pn+1. Let also q
ε/ε
−−→→A q for all q ∈ Q.

Definition 3.4 describes a path between two states in an

s-EFT where transitions are traversed by reading symbols

in the input list. Transduction paths are required to start

at the initial state and end in the finalizer state •. We use

PathsA(u, •) = {(p0, r0) · · · (pn, rn)} to denote the set of

paths with which u can reach a finalizer—i.e., the transition

rn is of the form pn
un/vn
−−−−→

ℓ
•.

Definition 3.5. The transduction of A is defined as

TA(u)
def
= {v | q0

u/v
−−→→ •}.

s-EFTs have nondeterministic semantics and transductions

typically represent relations rather than functions. Unambigu-

ous s-EFTs are an interesting subclass of s-EFTs that compute

functions.

Definition 3.6. An s-EFT A is unambiguous if for every list

u, |PathsA(u, •)| ≤ 1.

When an s-EFT A is unambiguous, TA(u) is either a

singleton set or the empty set. We write TA(u) = t when

TA(u) = {t} and TA(u) = ⊥ when TA(u) = {}. When

TA(u) 6= ⊥, we write PathA(u, •) = (p0, r0) · · · (pn, rn)
to denote the unique run of A on u.

Unfortunately, it is undecidable to check whether an s-

EFT is ambiguous [8], which means that in general we

cannot check whether a GENIC program is ambiguous or not.

Instead, we require GENIC programs to be deterministic be-

cause this property can be automatically checked. We define

ϕfψ, where ϕ is a σm-predicate and ψ a σn-predicate, as the

σmax(m,n)-predicate λ(x1, . . . , xmax(m,n)).ϕ(x1, . . . , xm)∧
ψ(x1, . . . , xn). We define equivalence of f and g modulo ϕ,

f ≡ϕ g, as: IsValid(λx̄.(ϕ(x̄) ⇒ f(x̄) = g(x̄))).

Definition 3.7. An s-EFA A is deterministic if for all tran-

sitions p
ϕ/f
−−→

ℓ
q and p

ϕ′/f ′

−−−→
ℓ′

q′ ∈ ∆ one of the following

properties hold.

(a) If q, q′ ∈ Q and IsSat(ϕ f ϕ′), then q = q′, ℓ = ℓ′ and

f ≡ϕfϕ′ f ′.

(b) If q = q′ = •, IsSat(ϕ f ϕ′), and ℓ = ℓ′, then

f ≡ϕfϕ′ f ′.

(c) If q ∈ Q, q′ = •, and IsSat(ϕf ϕ′), then ℓ > ℓ′.

Clearly, a deterministic s-EFA is also unambiguous. Intu-

itively, determinism means that no two rules may overlap. To

check whether a GENIC program is deterministic we check

whether the induced s-EFT is deterministic.

Example 3.8. The GENIC program in Figure 2 is determin-

istic because at most one rule can be triggered for any input.

Without loss of generality, we assume that all states are

reachable from the initial state and can reach the finalizer •.

3.4 Operations

GENIC supports the following operations over list transfor-

mations. isInjective f checks whether the transformation f is

injective and returns two different input lists that produce the

same output otherwise (Section 4). invert f constructs a pro-

gram f−1, which is the inverse of the injective transformation

f—i.e., for every input x, f−1(f(x)) = x (Section 5).

4. Checking s-EFT Injectivity

To invert a GENIC program we first need to check whether

the program is injective—i.e., whether for any two distinct

inputs the program produces distinct outputs. This property is

necessary for invertibility, but not sufficient (We will expand

on this aspect in Section 5). In this section, we formally study

the problem of checking whether an s-EFT is injective. We

first show that the problem is undecidable and then present a

technique for checking injectivity for a restricted but practical

class of s-EFTs. For the sake of generality, we state our

theorems for unambiguous s-EFTs, but all theorems also hold

for deterministic s-EFTs.

4.1 A Theory of Injectivity for s-EFTs

We first define what it means for an s-EFT to be injective and

then show that this property is equivalent to the conjunction

of two simpler properties called transition-injectivity and

path-injectivity.

Definition 4.1 (Injectivity). An s-EFT A is injective iff for

every two lists u and v, if TA(u) 6= ⊥, TA(v) 6= ⊥, and

u 6= v, then TA(u) 6= TA(v).

The following definition captures the case in which an

s-EFT is not injective because an individual transition can

produce the same output when provided with different input.

Definition 4.2 (Transition-injective s-EFT). A transition

p
ϕ(x̄)/f̄
−−−−→

ℓ
q is injective iff every two lists ā and b̄ of size

380

ℓ, if ā 6= b̄, ϕ(ā) and ϕ(b̄), then [[f̄]](ā) 6= [[f̄]](b̄). An s-EFT

A is transition-injective iff all its transitions are injective.

Example 4.3. The transition p
⊤/[x0+1,x1]
−−−−−−−−→

2
q is injective

because both its output functions are injective. The transition

p
⊤/[x2

0]−−−−→
1

q is not injective because the function x2 is not

injective. If we restrict the domain of the transition to the

set of positive numbers we obtain an injective transition

p
x0>0/[x2

0]−−−−−−→
1

q.

The following notion captures the case in which an s-EFT

is not injective because two different input lists with different

accepting paths produce the same output.

Definition 4.4 (Path-injective s-EFT). An unambiguous s-

EFT A is path-injective iff for every two lists u and v, if

TA(u) 6= ⊥, TA(v) 6= ⊥, and PathA(u, •) 6= PathA(v, •),
then TA(u) 6= TA(v).

Example 4.5. Consider the s-EFT P = ({p, q}, p,∆P) with

the following transitions.

p
x0>0/[x0−5]
−−−−−−−−→

1
q, q

x0>0/[x0−5]
−−−−−−−−→

1
•,

p
x0<0∧x1<0/[x0+5,x1+5]
−−−−−−−−−−−−−−−−→

2
•

This s-EFT P is transition-injective, but not path-injective,

because on both the inputs [5, 5] and [−5,−5] it outputs the

list [0, 0].

We now show the relations between s-EFT injectivity and

the two properties we just defined.

Theorem 4.6. An unambiguous s-EFT A is injective iff A is

both transition-injective and path-injective.

Our characterization of injectivity in terms of transition-

and path-injectivity is unique to symbolic transducers. In

finite transducers, which operate over finite alphabets, all

transitions are trivially injective

4.2 Checking Transition-Injectivity

We provide an algorithm for checking whether an s-EFT is

transition-injective.

Lemma 4.7. It is decidable to check whether an s-EFT is

transition-injective.

Proof. Checking whether an s-EFT A is transition-injective

amounts to checking whether all its transitions are injective.

To see whether a transition p
ϕ(x̄)/f̄(x̄)
−−−−−−→

ℓ
q is injective we can

test whether the following Boolean formula is satisfiable.

(x̄1 6= x̄2) ∧ ϕ(x̄1) ∧ ϕ(x̄2) ∧ ([[f]](x̄1) = [[f]](x̄2))

This test is decidable because the alphabet theory of A forms

a decidable Boolean algebra.

4.3 Checking Path-Injectivity

In general, checking path injectivity is undecidable.

Theorem 4.8. It is undecidable to check whether a determin-

istic s-EFT is path-injective or injective.

Proof. Recall that a Minsky machine is a program with a

finite sequence of instructions that has two registers r1 and r2
that can hold natural numbers. Each instruction is one of the

following: INC i (increment ri and continue with the next

instruction); DEC i (decrement ri if ri > 0 and continue

with the next instruction); JZ i(j) (if ri = 0 then jump to the

j’th instruction else continue with the next instruction). The

machine halts when the end of the program is reached. Let

M be a Minsky machine with program P . We use a tuple

(program counter, r1, r2) of type σ = γ = N
3 to represent

a configuration of M . Let πj : σ→N be the function that

projects the j’th element of a k-tuple where 0 ≤ j < k.

We construct an s-EFT A, which is ambiguous iff the

Minsky machine M halts on input (0, 0) with a non-zero

output in r1. Let ϕ000 be the predicate λx.x = (0, 0, 0) and

let ϕ111 be the predicate λx.x = (1, 1, 1). Let ϕfin be the

final predicate λx.π0(x) = |P | ∧ π1(x) 6= 0. The predicates

ϕ000 and ϕfin describe the initial and final configurations of

M , respectively.

We define a binary predicate ϕstep that describe pairs of

correct adjacent configurations in M . The predicate ϕstep

is of the form λ(x, x′).
∨

i<|P | ϕ
step
i , where ϕ

step
i is the

formula describing the valid step relation of M from a

configuration x to the next configuration x′, when executing

the i-th instruction. For example, if the i’th instruction is

INC 1, then ϕ
step
i is

π0(x)= i∧π0(x
′)= i+1∧π1(x

′)=π1(x)+1∧π2(x
′)=π2(x).

The encoding is similar for the other instructions. The s-EFT

A is the tuple ({q0, q1, q2, q3}, q0,∆) where ∆ contains the

following transitions.

q0
ϕ000(x1)/[]
−−−−−−−→

1
q1, q1

ϕstep(x1,x2)/[x1,x2]
−−−−−−−−−−−−−→

2
q1,

q1
⊤/[]
−−−→

0
• , q0

ϕ111(x1)/[]
−−−−−−−→

1
q2, q1

ϕ000(x1)/[x1]
−−−−−−−−→

1
q2

q2
ϕstep(x1,x2)/[x1,x2]
−−−−−−−−−−−−−→

2
q2, q2

ϕfin(x1)/[x1]
−−−−−−−−→

1
•

The s-EFT A is deterministic and transition-injective. Given

a list of the form (0, 0, 0)a1 . . . a2n, A outputs a1 . . . a2n iff,

for every 1 ≤ i ≤ n, the symbols a2i−1 and a2i are correct

adjacent configurations of the machine M . The transduction

is undefined on all other list starting with (0, 0, 0). Given a

list of the form (1, 1, 1)a1 . . . a2n, A outputs a1 . . . a2n iff,

for every 1 ≤ i < n, the symbols a2i and a2i+1 are correct

adjacent configurations of the machine M , a1 is the initial

configuration of M , and a2n is the final configuration of M .

The transduction is undefined on all other lists starting with

(1, 1, 1).

381

Notice that each individual transition computes an in-

jective function. The s-EFT A is not injective iff there ex-

ists a sequence a1 . . . a2n for which A is defined on both

(0, 0, 0)a1 . . . a2n and (1, 1, 1)a1 . . . a2n, as these two inputs

would produce the same output a1 . . . a2n. The existence of

such a sequence implies that a1 . . . a2n is an accepting run of

the Minsky machine M as it satisfies the step relations at all

positions and it has the correct initial and final configuration.

It follows that A is not injective iff M halts on input (0, 0)
with a non-zero output in r1. The latter is an undecidable

problem as an instance of Rice’s theorem. This concludes our

proof.

The proof relies on the use of symbolic alphabets; in fact,

checking injectivity of finite transducers, which operate over

finite alphabets, is decidable [13].

In the following, we provide a technique for checking path-

injectivity for a restricted but practical class of s-EFTs. Given

an s-EFT A, we show how to construct a non-deterministic

s-EFA AO that accepts the set of all output lists produced by

A and show that A is path-injective iff AO is ambiguous—

i.e., there exists an input with two different accepting paths.

Finally, if all the predicates appearing in the transitions of

AO are expressible as conjunctions of unary predicates, we

provide an algorithm for checking whether AO is ambiguous.

Definition 4.9 (Output s-EFA). Given an s-EFT A =
(Q, q0,∆), the output automaton of A is the s-EFA AO =

(Q∪∆, q0,∆O) such that for every transition t = p
ϕ(x̄)/f̄(x̄)
−−−−−−→

ℓ

q ∈ ∆, ∆O contains two transitions tǫ = p
true
−−−→

0
qt and

tout = qt
∃ā.ϕ(ā)∧x̄=[[f̄]](ā)
−−−−−−−−−−−−→

|f̄ |
q where qt denotes the state

representing t.

For every list v accepted by AO, there exists a list u such

that TA(u) = v. We can now define the relation between

path-injectivity of A and ambiguity of AO .

Lemma 4.10. An unambiguous s-EFT A is path-injective iff

its output automaton AO is unambiguous.

Intuitively, this lemma follows from the fact that for

each input of A there exists a path in AO accepting the

corresponding output. Therefore, if A on two different inputs

produces the same output l, there will be two distinct paths

in AO accepting the list l.

Example 4.11. Consider the s-EFT P from Example 4.5.

The output automaton of PO has the following transitions.

p
true
−−−→

0
pt1, pt1

∃y.y>0∧x0=y−5
−−−−−−−−−−−→

1
q,

q
true
−−−→

0
qt2, qt2

∃y.y>0∧x0=y−5
−−−−−−−−−−−→

1
•,

p
true
−−−→

0
pt3, pt3

∃y0,y1.y0<0∧y1<0∧x0=y0+5∧x1=y1+5
−−−−−−−−−−−−−−−−−−−−−−−−−−→

2
•

The s-EFA PO is ambiguous because the list [0, 0, 0] is

accepted by the two paths containing the sequences of states

p, pt1, q, qt2, • and p, pt3, •.

Using Theorem 4.8 we have that it is undecidable to check

whether an s-EFA is unambiguous. We introduce a subclass of

s-EFAs for which checking ambiguity is decidable. A binary

relation R over X is Cartesian over X if R is the Cartesian

product R1 × R2 of some R1, R2 ⊆ X . The definition is

lifted to n-ary relations and σn-predicates for n ≥ 2 in an

obvious way. To decide if a satisfiable predicate ϕ(x̄) of

arity n is Cartesian over a type σ (denoted IsCartesian(ϕ)),
given a model (a0, . . . , an−1) of ϕ we can check whether the

following formula is valid.

∀x̄ (ϕ(x̄) ⇔
∧

i<n ϕ(a0, . . . , ai−1, xi, ai+1, . . . , an−1))

In other words, a predicate ϕ(x̄) is Cartesian over σ iff ϕ can

be rewritten equivalently as a conjunction of n independent

unary predicates. Notice that we can use the validity decision

procedure of the alphabet theory to decide whether a predicate

is cartesian.

Definition 4.12 (Cartesian s-EFA [8]). An s-EFA is Cartesian

if all its guards are Cartesian.

Example 4.13. The s-EFA PO in Example 4.11 is Cartesian.

The only transition containing a binary predicate is the last

one, which contains the predicate ∃y0, y2.y0 < 0 ∧ y1 <

0 ∧ x0 = y0 + 5 ∧ x1 = y1 + 5. This predicate is equivalent

to x0 < 5∧ x1 < 5. An example of non-Cartesian predicates

is the predicate x0 = x1 over the type N.

Cartesian s-EFAs can be transformed into equivalent s-FAs

by splitting each transition of lookahead k into k transitions

of lookahead 1. Since it is decidable to check whether an

s-FA is ambiguous, we have that checking ambiguity is also

decidable for Cartesian s-EFAs. The algorithm is based on

the product construction used for checking NFA ambiguity.

Lemma 4.14 (s-EFA ambiguity). Checking whether a Carte-

sian s-EFAs is unambiguous is decidable.

Example 4.15. Recall the s-EFT for BASE64 in Example 3.3.

The corresponding output automaton is a Cartesian s-EFA

and has the following transitions

p
β64(x0)∧β64(x1)∧β′′

64(x2)∧x3=‘=’
−−−−−−−−−−−−−−−−−−−−−−→

4
• p

∧3
i=0

β64(xi)
−−−−−−−−→

4
p

p
⊤
−→
0

• p
β64(x0)∧β′

64(x1)∧x2=‘=’∧x3=‘=’
−−−−−−−−−−−−−−−−−−−−−→

4
•

where the predicate β64(y) is true iff y is a valid BASE64

digit, i.e., y = ⌈x⌉ for some x, 0 ≤ x ≤ 64. The predicates

β′
64(y) and β′′

64(y) are restricted versions of β64(y) and the

ASCII of ‘=’ is not a valid BASE64 digit. This automaton is

deterministic and therefore unambiguous, which implies that

the s-EFT in Example 3.3 is path-injective.

We can now state our main decidability result.

382

Theorem 4.16 (Cartesian-output s-EFT injectivity). Given

an unambiguous s-EFT A = (Q, {q0},∆), if the output

automaton AO is Cartesian, then it is decidable to check

whether A is injective. Moreover, there exists an algo-

rithm for checking injectivity with complexity O((n+ tℓ)2 +
(tℓ)2f(2k)), where n = |Q|, t = |∆|, ℓ is the lookahead of

A, k is the size of the largest transition in A, and f(x) is the

complexity of checking satisfiability of predicates of size x in

the alphabet theory of A.

Proof. Decidability follows from Theorems 4.6 and 4.7, and

Lemmas 4.10 and 4.14. Checking whether A is transition-

injective requires one satisfiability check for every transition

and has complexity O(tf(k)). The s-EFA AO has the same

lookahead ofA and the same number of states and transitions.

Moreover, each predicate in AO has size O(k). The Carte-

sian s-EFA A′
O equivalent to AO has O(n+ tℓ) states, O(tℓ)

transitions, the largest predicate has size O(k). Finally, the

product automaton B has O((n+ tℓ)2) states, O((tℓ)2) tran-

sitions, and the largest predicate has size O(2k) because of

the conjunctions appearing on each transition. The emptiness

of B can be checked using a depth-first search. Hence, the

complexity O((n+ tℓ)2 + (tℓ)2f(2k)).

5. Inverting s-EFTs

In this section, we formalize the theory of s-EFT inversion

and describe how to translate it into practice using SYGUS

solvers. For the sake of generality, we state our theorems

for unambiguous s-EFTs, but all theorems also hold for

deterministic s-EFTs. The functions we invert may be partial.

We start by defining the inverse of an s-EFT.

Definition 5.1 (Inverse s-EFT). An unambiguous s-EFT A

is an inverse of an unambiguous s-EFT B iff, for every list u

and v, TA(u) = v iff TB(v) = u.

Clearly a necessary condition for admitting an inverse is

thatA is injective. We provide a symbolic s-EFT construction

for characterizing the structure of an inverse s-EFT. We first

define the notion of inverse transitions and then use it to build

inverse s-EFTs.

Definition 5.2 (Transition inverse). A transition (p, k, ψ, ḡ, q)
inverts a transition (p, ℓ, ϕ, f̄ , q) iff k = |f̄ |, ℓ = |ḡ|, ψ(ȳ) ≡
∃x̄.ϕ(x̄) ∧ (ȳ = f̄(x̄)), and ∀x̄.ϕ(x̄) → (ḡ(f̄(x̄)) = x̄).

Given a transition r, we use inv(r) to denote the set of all

transitions that invert r and r−1 to denote some element of

inv(r). Intuitively, if a transition r outputs the list v when

reading a list u, the inverse transition r−1 outputs u when

reading v. This definition is symmetric—i.e., t inverts r iff r

inverts t. For r to have an inverse, r must be injective.

Example 5.3. Consider two s-EFT’s transitions

p
x0<0∧x1<0/[x0+5,x1+5]
−−−−−−−−−−−−−−−−→

2
q p

y0<5∧y1<5/[y0−5,y1−5]
−−−−−−−−−−−−−−−−→

2
q

The two transition invert each other. The guard of the right

transition, y0 < 5 ∧ y1 < 5, is equivalent to the quantified

formula describing the set of possible outputs of the left tran-

sition. The composition of their output functions is equivalent

to identity function when evaluated over elements satisfying

the guard x0 < 0 ∧ x1 < 0.

If we have an effective way for inverting transitions, we

can construct an inverse of an s-EFT A = (Q, q0,∆) as

s-EFT A−1 = (Q, q0,∆−1) where ∆−1 def
= {r−1 | r ∈ ∆}.

Theorem 5.4. Given an unambiguous injective s-EFT A, the

s-EFT A−1 is an inverse of A and is unambiguous.

Theorem 5.4 shows that the inverse of a deterministic

s-EFT might be nondeterministic but unambiguous.

Example 5.5. Consider the s-EFT D with the following

transitions and initial state q0.

q0
x0<0/[x0]
−−−−−−→

1
q1, q0

x0>0/[−x0]
−−−−−−−→

1
q2

q2
true/[x0]
−−−−−−→

0
q1, q1

true/[]
−−−−−→

0
•

The s-EFT D is deterministic and injective, and its inverse

D−1 contains the following transitions.

q0
x0<0/[x0]
−−−−−−→

1
q1, q0

x0<0/[−x0]
−−−−−−−→

1
q2

q2
true/[x0]
−−−−−−→

1
q1, q1

true/[]
−−−−−→

0
•

The s-EFT D−1 is non-deterministic and unambiguous.

Theorem 5.4 shows that, if we have an algorithm for in-

verting transitions, we can directly use it to compute inverse

s-EFTs. We say that an alphabet theory admits inverse func-

tions if for every two types σ and γ, for every predicate

ϕ(x̄) of type σ→ BOOL, and for every function f(x̄) of type

σ→ γ, there exists a function g of type σ→ γ in D such that

∀x̄.ϕ(x̄) → (g(f(x̄)) = x̄). This class of alphabet theories

guarantees the existence of the inverse of a transition (Defini-

tion 5.2). The following corollary immediately follows from

Theorem 5.4.

Corollary 5.6. Given an unambiguous injective s-EFT A

over a recursively enumerable alphabet theory that admits

inverse functions, there exists an s-EFT B that is the inverse

of A. Moreover, constructing B is decidable.

To compute B, we can simply invert each transition by

enumerating all functions in the alphabet theory. The exis-

tence of such functions is guaranteed because the alphabet

theory admits inverse functions. In the concrete implementa-

tion of GENIC, we use more effective synthesis techniques to

produce inverse functions. An interesting aspect of this algo-

rithm is that all the transitions can be inverted independently

and the computation of B is amenable for parallelization.

Example 5.7. The theory of bit-vector arithmetic admits

inverse functions because it operates over a finite domain.

383

The theory of arithmetic with transcendental functions

is not recursively enumerable and it does not admit inverse

functions. For example, the inverse of a function f(x) =
x− sin x cannot be expressed using a term of finite size.

6. Inverting s-EFTs in GENIC

The previous section presented a framework for building

the inverse of an s-EFT by computing the inverse of all its

transitions. However, the proposed techniques are far from

being practical. First, if we use Definition 5.2 directly to

produce the guard of the inverse transition, we get a predicate

containing quantifiers. Predicates containing quantifiers are

not practical because they cannot be programmed efficiently

and they are not directly expressible in GENIC. To address

the first issue, GENIC uses quantifier elimination to produce

a guard that does not contain quantifiers. As we discussed

in Section 3, GENIC supports the theories of linear integer

arithmetic and bit-vector arithmetic, and these theories both

admit decidable quantifier elimination.

Second, if we look at Corollary 5.6, the algorithm pro-

posed for generating the output term in the inverse transition

requires an exhaustive enumeration of all the functions in the

alphabet theory. In this section, we show how the problem of

computing inverse functions of a transition can be encoded

in the framework of Syntax-Guided Synthesis [2].

Background A Syntax-Guided Synthesis (SYGUS) prob-

lem is specified with respect to a background theory T that

fixes the type of variables, operations on types, and their in-

terpretation. The goal of a SYGUS problem is to synthesize

a function f of a given type which satisfies two constraints

provided by users. The first constraint describes a semantic

property that f should satisfy and is given as a predicate

ψ(e)
def
= ∀x.φ(e, x) with a free variable e—i.e., the unknown

function. The second constraint limits the syntactic structure

f is allowed to have and is given as a set E of expressions

specified by a context-free grammar defining a subset of all

the terms in T . A solution to the SYGUS problem is an ex-

pression f in E such that the formula ψ(f) is valid.

Inverting functions with SYGUS Definition 5.2 gives us a

natural way to encode the problem of computing the function

ḡ as a SYGUS problem. Assume that we have a transition

t = (p, ℓ, ϕ, f̄ , q) and want to generate one inverted transition

t−1 = (p, k, ψ, ḡ, q). We showed how to compute the guard

ψ, but we need a list of functions ḡ
def
= [g1, g2, ..., gl] such

that ∀x̄.ϕ(x̄)→ (ḡ(f̄(x̄)) = x̄). We observe that the output

functions gi are independent from each other and refine the

specification for each function gi as ∀x̄.ϕ(x̄) → (gi(f̄(x̄)) =
xi). We now have a separate SYGUS semantic constraint

for each function gi. Since we do not know what terms the

function gi might need, the SYGUS syntactic constraint for

gi is the context-free grammar describing all the terms in the

alphabet theory.2

Example 6.1. The following SYGUS problem asks to synthe-

size the function g0(y0, y1) : Z× Z → Z , which represents

the first output component of the transition r in Example 5.3.

The semantic constraint ensures that r inverts the transition

t.

ψ(g0)
def
= ∀(x0, x1).x0 > 0∧x1 > 0 → g0(x0+5, x1+5) = x0

A possible syntactic constraint for g0 is the following context-
free grammar.

Start ::= (Start + Start) | (Start − Start) | Var | Const

Var ::= y0 | y1 Const ::= 0 | 1 | 2 | 5 | 6

A solution to this problem is g0(y0, y1) = y0 − 5.

GENIC optimizations We design two techniques that are

specific to the problem of inverting functions in GENIC and

use them to improve the performance and the result quality

of GENIC. We evaluate both these techniques in Section 7.

The goal of our first technique is to use auxiliary functions

to generate GENIC programs that are small in size and natural

to read. We use SYGUS to invert the auxiliary functions

that are defined in the preamble of the GENIC program and

then add these functions to the SYGUS syntactic constraint

when trying to invert transitions. For example, the GENIC

program in Figure 2 has two auxiliary functions (lines 2-6).

GENIC checks which of these functions are injective and it

computes their inverses using SYGUS. After synthesizing

the inverses of the auxiliary functions, GENIC produces new

SYGUS instances for synthesizing the transitions. This time,

the SYGUS solver is provided with an enriched grammar

that allows the synthesizer to produce terms containing the

synthesized auxiliary functions and the auxiliary functions of

the original program. This optimization also allows GENIC

to produce more succinct programs.

Our second technique aims at reducing the size of the

SYGUS grammar and therefore the search space. Consider

the following transition and its inverse:

t = p
x1≥0,x2≥0/[x1+x2,x1]
−−−−−−−−−−−−−−−→

2
q

t−1 = p
y1≥y2,y2≥0/[y2,y1−y2]
−−−−−−−−−−−−−−−→

2
q.

First, since the functions appearing in t only use the plus

operator, their inverses only require the minus operator.

We can use this observation to simplify what operators we

allow in the SYGUS grammar. Second, we observe that the

first function appearing in t−1 only uses the variable y2 as

input. Intuitively, the variables y1 is enough to recover the

original value of x1 because the function f2(x1, x2) = x1
in the output of t is injective on x1 and constant—i.e., does

2 Even though all numerical constants can be derived using the terms +, -, 0,
and 1, to simplify the search, we also add all the constants appearing in the
input program to the grammar given a syntactic constraint.

384

family program states trans auxFun
max size isDet isInj inversion

theory
ℓ (bytes) (secs) (secs) total max-tr res

BASE64
encoder 2 4 2 3 971 0.05s 2.20s 9.32s 5.18s ✓ BitVec 8
decoder 2 4 3 4 1454 0.14s 2.92s 33.66 19.24s ✓ BitVec 8

mod BASE64
encoder 2 4 2 3 954 0.03s 2.28s 10.30s 6.06s ✓ BitVec 8
decoder 2 4 3 4 1396 0.08s 2.73s 34.43s 21.64s ✓ BitVec 8

BASE32
encoder 2 6 2 5 1735 0.19s 6.45s 20.55s 9.06s ✓ BitVec 8
decoder 2 6 3 8 1570 0.18s 4.66s 138.46 53.05s ✓ BitVec 8

BASE16
encoder 2 2 2 1 473 0.03s 0.30s 2.10s 2.10s ✓ BitVec 8
decoder 2 2 3 2 732 0.03s 0.15s 1.92s 1.13s ✓ BitVec 8

UTF-8
encoder 1 4 1 1 1974 0.17s 1.05s 80.17s 69.20s 3/4 BitVec 32
decoder 1 4 1 4 1864 0.19s 0.86s 8.13s 3.57s ✓ BitVec 32

UTF-16
encoder 1 2 0 1 1436 0.06s 0.64s 31.19s 30.56s ✓ BitVec 32
decoder 1 2 0 2 1279 0.12s 0.87s 3.17s 2.72s ✓ BitVec 32

UU
encoder 2 4 2 4 862 0.03s 2.85s 6.14s 4.06s ✓ BitVec 8
decoder 2 4 3 3 1258 0.07s 2.95s 24.16s 18.56s ✓ BitVec 8

Table 1: Performance and effectiveness of GENIC on 14 encoders and decoders. The column total shows the total time to invert

the program, while the column max-tr shows the maximum time of inverting a single transition. In the column res, the symbol

✓denotes that all transitions were inverted. For the UTF-8 encoder, GENIC could only invert 3 transitions out of 4 and we report

the total time taken to invert the 3 transitions.

not depend—on x2. In general, when inverting a transition

p
ϕ(x̄)/[f1(x̄),...,fk(x̄)]
−−−−−−−−−−−−−→

ℓ
q, each function in p−1 might only

require a subset of the variables {y1, ..., yk}. Intuitively, a

subset of the variables ȳ∗ = {yi1 , . . . , yij} ⊆ {y1, ..., yk} is

enough for recovering xi if f̄∗ = [fi1 , . . . , fij] is injective

with respect to ȳ∗ and constant with respect to Y \ ȳ∗. With

abuse of notation we use ā∗ to denote an assignment to the

variables in ȳ∗, c̄# to denote an assignment to the variables in

Y \ ȳ∗, and f(ā∗, c̄#) (resp. ϕ(ā∗, c̄#)) to denote the result

of substituting the variables in ȳ∗ with ā∗ and the variables in

Y \ ȳ∗ with c̄# in f (resp. ϕ). Formally, the set of variables

ȳ∗ is enough for recovering xi iff for every ā∗, b̄∗, c̄#, d̄#,

such that ā∗ 6= b̄∗, then the following implications hold:

ϕ(ā∗, c̄#) ∧ ϕ(b̄∗, c̄#) → f̄∗(ā∗, c̄#) 6= f̄∗(b̄∗, c̄#) (1)

ϕ(ā∗, c̄#) ∧ ϕ(ā∗, d̄#) → f̄∗(ā∗, c̄#) = f̄∗(ā∗, d̄#) (2)

Equation 1 guarantees that f̄∗ is injective with respect to ȳ∗,

while equation 2 guarantees that f̄∗ is constant with respect to

Y \ ȳ∗. Using this definition, we can exhaustively search for a

minimum set of variables ȳ∗ needed to synthesize each output

function. This set might not be unique. The variable reduction

procedure does not sacrifice completeness, but, in general,

reducing the SYGUS grammar may prevent the existence of

inverse functions. In practice, we run the synthesis algorithm

in parallel with and without optimization.

7. Evaluation

We now describe the implementation details of GENIC and

evaluate its effectiveness and performance on a comprehen-

sive set of benchmarks. The experiments were run on an Intel

Core i7 4.00GHz CPU with 32 GB of RAM.

Implementation GENIC is written in JAVA, and uses the

symbolic automata library SVPAlib [6] for the required

automata operations. The alphabet theories of bit-vector and

linear integer arithmetic are implemented using the SMT

solver Z3 [10] and are also the only theories supported

by existing SYGUS solvers. We experimented with all the

SYGUS solvers from SYGUS-comp 2014, 2015, and 2016 [3]

and chose the Enumerative CEGIS solver3, the winner of the

2014 competition, as our SYGUS solver.4 The other solvers

were either slower or did not support the full SYGUS syntax.

Benchmarks We evaluate our technique on both real pro-

grams and artificial benchmarks. All programs are determin-

istic. First, we assess whether GENIC can invert 14 efficient

bit-vector implementations of string encoders and decoders

that are commonly used in networking. The set of considered

coders can be found in Table 1. All these programs operate

over the theory of bit-vectors and represent characters as

groups of bytes. The BASEX encodings are binary-to-text

encoding schemes that represent binary data in ASCII string

format. The modified BASE64 encoder is the special version

of the BASE64 encoding mentioned in Section 2. The UTFX

encodings translate Unicode characters int groups of bytes

of fixed length. The UU encoding is similar to BASE64. The

programs have 0 to 3 auxiliary functions, 1 to 2 states, 2 to 6

transitions, and sizes varying between 473 and 1974 bytes.

Second, we use an artificial set of 17 programs of varying

size to evaluate how the number of states and transitions in the

program affects the performance of GENIC. These programs

operate over the theory of linear integer arithmetic and are

described in Section 7.2.

3 Available at https://github.com/abhishekudupa/sygus-comp14.
4 The solver CVC4, which won the 2015 competition, was also able to
handle several of our benchmarks. However, it was slower than Enumerative
CEGIS and produced very large and unreadable results, especially for the
theory of bit-vectors.

385

https://github.com/abhishekudupa/sygus-comp14

0 5 10 15 20 25

0

200

400

TO

size of target function

se
co

n
d

s

Figure 4: Synthesis time vs size of target functions.

7.1 Effectiveness of GENIC

In this experiment we evaluate how effective GENIC is at

inverting real string coders. The results are shown in Table 1.

The timeout for inverting a transition was set to 20 minutes.

GENIC successfully inverted 13 programs out of 14 and

could prove injectivity and determinism for all the 14 pro-

grams. Checking determinism took less than 0.2 seconds per

program (avg: 0.1s) and each injectivity check took less than

10 seconds (avg: 2.2s). Inverting programs is the most costly

operation. GENIC took between 2 and 138 seconds (avg: 25s)

to invert each program and failed on one program. For the

UTF-8 encoder, GENIC was only able to invert 3 transitions

out of 4 because the failing transitions required synthesising

an inverse functions that contained 25 operators and terms.

Currently, this size is beyond the reach of existing SYGUS

solvers.

Although Theorem 5.4 shows that the output of GENIC

can be a nondeterministic unambiguous program, in this ex-

periment, GENIC always produced a deterministic program.

As we observed in Section 5, our inversion algorithm

is amenable for parallelization because each transition can

be inverted independently. For each program we report the

maximum time it took to invert a single transition (max-tr)

and observe that, in many cases, a single transition dominates

the total runtime. Despite this fact, inverting each transition

in parallel yields a 1.69x average speedup.

7.2 Detailed Evaluation

We now discuss and evaluate quantitative aspects of our

algorithms.

Size of inverted functions In Section 7.1 we mentioned that

the SYGUS solver could not synthesize functions with more

than 25 operators and terms. In this experiment we report

the runtime of each call to the SYGUS solver performed

during the experiments showed in Table 1 and measure how

the performance of SYGUS degrades when the size of the

inverse function increases. The results are shown in Figure 4.

In general, we can observe an exponential trend in the size

of the target function. This fact further shows how GENIC

B
6
4
E

B
6
4
D

m
B
6
4
E

m
B
6
4
D

B
3
2
E

B
3
2
D

B
1
6
E

B
1
6
D

U
T
F
8
D

U
T
F
1
6
E

U
T
F
1
6
D

U
U
E

U
U
D

0

100

200
TO

se
co

n
d
s

both

only-mining

only-aux
none

Figure 5: Inversion time with and without optimizations.

only-aux indicates that only the optimization that synthesizes

inverse of auxiliary functions is used, only-mining indicates

that only the optimization that simplifies the grammar given

to the SYGUS solver was used, both indicates that both

optimizations were used, and none that no optimization was

used. A line reaching 200 indicates a timeout.

is able to break the large synthesis problem of inverting a

program into small synthesis problems that are within reach

of existing SYGUS solvers.

Impact of optimizations We evaluate the impact of the op-

timizations we discussed at the end of Section 6. Figure 5

shows the time taken to invert the programs in Table 1 when

using all optimizations (all), only the technique for synthe-

sizing auxiliary functions (only-aux), only the technique for

reducing the grammar given to the SYGUS solver (only-

mining), and no optimization (none). GENIC can invert 13

programs when all optimizations are used. When both opti-

mizations are turned off, GENIC can only invert 5 programs

and this number does not change when we do not synthesize

auxiliary functions. When we only enable the technique for

synthesizing auxiliary functions, GENIC can invert 9 pro-

grams. This experiment motivates the need for both our opti-

mizations and shows how the design of GENIC is beneficial

in the synthesis process. In particular, thanks to the struc-

ture of GENIC programs, we are able to synthesize auxiliary

functions which are shown to be crucial for performance.

Size of inverted programs Figure 6 compares the sizes

of the programs generated by GENIC against the sizes of

programs written by us. The sizes of the generated programs

are, on average, 1.7 times larger than those written by us.

There are two factors leading to the increased sizes of the

generated programs. First, the predicates generated by the

SMT solver and the functions generated by the SYGUS

solver are typically not minimal. Second, sometimes the

synthesized programs do not use the auxiliary functions in

places where these functions could help reducing the size of

the programs. Despite this fact, the programs generated by

386

B
6
4
E

B
6
4
D

m
B
6
4
E

m
B
6
4
D

B
3
2
D

B
1
6
E

B
1
6
D

U
T
F
8
D

U
T
F
1
6
E

U
T
F
1
6
D

U
U
E

U
U
D

0

1,000

2,000

3,000

4,000

b
y

te
s

manual

GENIC

Figure 6: Sizes of manually written programs and programs

produced by GENIC with and without using auxiliary func-

tions. ✕
✕
✕

indicates a timeout.

GENIC are comparable in size to those we manually wrote.

In addition, we found that the generated programs were easy

to understand.

Number of states and transitions We consider a set of syn-

thetic benchmarks to illustrate how the different components

of our inversion procedure scale when varying the number of

states and transitions in the program. The GENIC programs in

the set ST = {S2, . . . , S18} operate over lists of integers and

are described as follows. Each program Sk, contains k + 1
states {q0, . . . , qk}. and 2k transitions with lookahead 3. For

every state qi, such that 0 ≤ i < k, the program contains two

transitions of the form:

qi
λx1,x2,x3.x1=0/[x1,x2+ci,x3+di]
−−−−−−−−−−−−−−−−−−−−−−→

3
qi, and

qi
λx1,x2,x3.x1=1/[x1,x2+ci,x3+di]
−−−−−−−−−−−−−−−−−−−−−−→

3
qi+1

where ci, di are some constants in Z.

Figure 7 shows the running times for checking injectivity

and for computing the inverse for the programs in ST . Note

that, in this experiment, the number of states is proportional to

the number of transitions. The time taken to check injectivity

aligns with the quadratic complexity we proved in Corol-

lary 4.16. Figure 7 also shows that the fraction of the time

spent computing the Cartesian predicates corresponding to

the outputs of each transition is negligible and is proportional

to the number of transitions. Since all transitions have compa-

rable complexity, the time taken to invert each program scales

linearly with the number of transitions. These trends align

with the theoretical complexities of our decision procedures.

7.3 Limitations

We showed that the tool GENIC is able to automatically

and efficiently invert 13 out of 14 real world encoders and

certain classes of programs operating over lists of integers.

We now describe some limitations of our tool, in particular

with respect to the programs we could not model or invert.

5 10 15

0

50

100

150

number of states

se
co

n
d

s

invert

isCartesian

isInjective

Figure 7: Running time for checking injectivity, computing

the inverse, and performing the Cartesian check over the

output language for the functions in ST .

Functions with large arity We showed how existing SY-

GUS solvers can only synthesize functions of limited sizes

and complexity. In particular, functions of size greater than

25 are beyond the capabilities of existing solvers. However,

given the continuous advances in SYGUS solvers [3], we

believe that soon GENIC will be able to synthesize more pro-

grams, and invert the UTF-8 encoder transition we currently

cannot invert.

Expressiveness The main structural limitation of GENIC

is that it can only invert programs that are expressible as

s-EFTs. While this class captures many interesting programs

such as string encoders, CSV file transformations, and cer-

tain functional programs that operate over lists, many other

programs we would like to invert cannot be modeled as s-

EFTs. For example, XML and JSON transformations operate

over hierarchical structures, while compression algorithms

like LZ77 transform the input in two passes: the first pass

produces a dictionary of all the words in the input, and the

second pass uses the dictionary rewrites the input. Similarly,

several network format transformations use checksums and

fields to declare the length of the payload. These transfoma-

tions require the ability to model trees and an infinite number

of states—e.g., registers. Defining transducer models that

can capture these types of behavior and use them to extend

GENIC is an interesting and challenging research direction.

We will expand on these extensions in related work.

Limited theories GENIC’s currently supports only theories

that admit quantifier elimination. This operation is used to

efficiently compute the output predicates of each transition,

predicates that are then used to check injectivity and to pro-

duce the inverted transitions. Although our current imple-

mentation is based on quantifier elimination, it is possible

to use SYGUS to synthesize not only the functions, but also

the predicates appearing on each transition. This technique is

likely to have performance limitations, but it could be used

to extend GENIC to decidable first-order theories that do not

admit quantifier elimination.

387

8. Related Work

Symbolic automata and transducers Symbolic finite au-

tomata (s-FAs) and transducers (s-FTs) were formalized

in [15] with a focus on analysis of sanitizers. The extended

model we studied, s-EFT, was designed to analyze string

encoders [8]. The main result in [8] is that equivalence is

decidable for Cartesian s-EFTs and undecidable in the gen-

eral case. An algorithm for checking whether a predicate is

Cartesian is also proposed in [8]. The same paper presents

monadic s-EFTs, which are equivalent in expressiveness to

Cartesian s-EFTs and allow transition guards to be finite dis-

junction of Cartesian predicates. In general, it is undecidable

to check whether a predicate is monadic [23]. Our paper

builds on some of these results, but, to our knowledge, the

questions of checking s-EFT injectivity and automatically

inverting s-EFTs have not been studied before. Veanes et al.

also proposed a variant of s-EFTs called k-s-FTs. This model

reflects the semantics of ML-style pattern-matching [24]—

i.e., programs are deterministic because rules are evaluated in

a given order. k-s-FTs do not enjoy good closure properties

and are not a good target model for GENIC.

Transducer inversion Finite state transducers (FST), which

operate over finite alphabets, enjoy closure properties that

s-EFTs do not enjoy. In fact, the problems of checking

injectivity and producing an inverse are trivial for FSTs.

Injectivity has also been studied for more complex transducer

models, such as deterministic tree transducers [4, 13].

To our knowledge, we are the first to study injectivity

checking and automatic inversion of symbolic transducers.

Our approaches are novel in two ways. First, we show that

checking injectivity for deterministic s-EFTs is harder—in

fact undecidable—than checking injectivity for deterministic

FSTs. We then present a decidable fragment of s-EFTs for

which injectivity is decidable. Second, while the transduction

relation computed by an FST can always be inverted, this is

not the case for s-EFTs because the functions in the alphabet

theory might not admit a closed form inverse.

Moreover, our proposed paradigm is foundational, general,

and it can be applied to other transducers models. For exam-

ple, applying our paradigm to Symbolic Tree Transducers [9]

will allow us to invert programs that operate over trees and

general recursive data-types, instead of just lists—e.g., XML

and JSON transformations. Similarly, models like streaming

transducers [1] will enable inversion of programs for which

the transformations depends on the input data—e.g., transla-

tions of network packets for which the length is a function of

an element of the input packet.

Automatic program inversion Dijkstra was the first one to

investigate the problem of automatically inverting programs

and manually inverted simple programs operating over ar-

rays [11]. Since then, new inversion techniques have been

proposed, but they are either only effective on simple pro-

grams [5, 12, 14, 16–18, 20] or are only semi-automated [22].

Moreover, some of these techniques do not provide guaran-

tees on the correctness of their results. We detail our compar-

ison in the following paragraphs.

Logic programming has been used to encode the semantics

of simple programs and compute their inverse [18]. Relational

calculus and deductive reasoning were used to derive inverses

of simple tree traversals [5, 20]. Unlike these approaches,

we focus on different, well-defined, classes of programs

and on providing algorithmic foundations for such classes

of programs. Formal techniques such as LR parsing and

context-free grammars have been used to invert very small

programs [14, 17]. In these cases, the formalisms were used

as algorithmic tools while we take a foundational approach

and ask whether programs represented using s-EFTs, a well

defined class, can be automatically inverted. Alur et al.

used testing techniques to synthesize inverse of a restricted

class of programs mapping arrays to arrays in an iterative

manner [17]. We tackle a different class of programs and

propose algorithms with well-defined formal guarantees.

Srivastava et al. combine templates and inductive synthesis

to design a semi-automated tool, PINS, for automatically

inverting imperative programs [22]. PINS requires the user to

provide templates and sometimes modify expressions in the

inverted programs and is therefore a fairly general tool that

is able to invert programs that are not expressible in GENIC.

Our approach is different in the following aspects. First, our

method is completely automatic and does not require the

user to provide any information other than the input program.

Second, our approach guarantees that the resulting program

is indeed the inverse of the input one. Instead, PINS only tests

the produced result and ultimately requires the programmer

to manually inspect multiple inverted solution. Third, GENIC

is grounded in formal methods and it can, for example, prove

injectivity of the input program while PINS cannot. Fourth,

on the programs both PINS and our tool can invert, GENIC is

10 to 100 times faster—e.g, 9 vs 1,300 sec for BASE64.

9. Conclusion

We presented the tool GENIC that automatically inverts func-

tional programs operating over lists containing elements from

complex domains-e.g., integers and bit-vectors. GENIC is

grounded in the theory of extended symbolic finite transduc-

ers, s-EFT, an expressive formal model that can capture com-

plex list-to-list transformations. We provided algorithms for

checking injectivity of s-EFTs and for automatically inverting

them. Using these algorithms, GENIC can automatically pro-

duces correct inverses for complex programs such as BASE64

and UTF-8 encoders and decoders.

Acknowledgements

Research funded by the Univ. of Wisconsin, Fall Research

Competition 2015. We thank Margus Veanes for the insightful

conversations that lead to this paper and the anonymous

reviewers for their feedback.

388

References

[1] R. Alur. Streaming String Transducers, pages 1–1. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011.

[2] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman,

S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and

A. Udupa. Syntax-guided synthesis. In Formal Methods in

Computer-Aided Design (FMCAD), 2013, pages 1–8. IEEE,

2013.

[3] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama. Re-

sults and analysis of SyGuS-comp’15. arXiv preprint

arXiv:1602.01170, 2016.

[4] M. Benedikt, J. Engelfriet, and S. Maneth. Determinacy

and rewriting of top-down and mso tree transformations. In

International Symposium on Mathematical Foundations of

Computer Science, pages 146–158. Springer, 2013.

[5] W. Chen and J. T. Udding. Program inversion: More than fun!

Science of Computer Programming, 15(1):1–13, 1990.

[6] L. D’antoni and R. Alur. Symbolic visibly pushdown automata.

In International Conference on Computer Aided Verification,

pages 209–225. Springer, 2014.

[7] L. D’Antoni and M. Veanes. Equivalence of extended symbolic

finite transducers. In International Conference on Computer

Aided Verification, pages 624–639. Springer, 2013.

[8] L. D’Antoni and M. Veanes. Extended symbolic finite au-

tomata and transducers. Formal Methods in System Design, 47

(1):93–119, 2015.

[9] L. D’Antoni, M. Veanes, B. Livshits, and D. Molnar. Fast:

A transducer-based language for tree manipulation. In ACM

SIGPLAN Notices, volume 49, pages 384–394. ACM, 2014.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In

International conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 337–340. Springer,

2008.

[11] E. Dijkstra. Program inversion. Program Construction, pages

54–57, 1979.

[12] D. Eppstein. A heuristic approach to program inversion. In

IJCAI, volume 85, pages 219–221, 1985.

[13] Z. Fueloep and P. Gyenizse. On injectivity of deterministic

top–down tree transducers. Information processing letters, 48

(4):183–188, 1993.

[14] R. Glück and M. Kawabe. A method for automatic program

inversion based on lr (0) parsing. Fundamenta Informaticae,

66(4):367–395, 2005.

[15] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and

M. Veanes. Fast and precise sanitizer analysis with BEK.

In Proceedings of the 20th USENIX conference on Security,

pages 1–1. USENIX Association, 2011.

[16] A. Kanade, R. Alur, S. Rajamani, and G. Ramanlingam. Rep-

resentation dependence testing using program inversion. In

Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering, pages

277–286. ACM, 2010.

[17] M. Kawabe and R. Glück. The program inverter LRinv and its

structure. In International Workshop on Practical Aspects of

Declarative Languages, pages 219–234. Springer, 2005.

[18] B. J. Ross. Running programs backwards: the logical inversion

of imperative computation. Formal Aspects of Computing, 9

(3):331–348, 1997.

[19] SANS. Malware faq. https://www.sans.org/

security-resources/malwarefaq/wnt-unicode.

[20] B. Schoenmakers. Inorder traversal of a binary heap and

its inversion in optimal time and space. In Mathematics of

Program Construction, pages 291–301. Springer, 1993.

[21] F. Servais and J.-F. Raskin. Visibly pushdown transducers.

ULB, Belgique, 2011.

[22] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-

based inductive synthesis for program inversion. In ACM

SIGPLAN Notices, volume 46, pages 492–503. ACM, 2011.

[23] M. Veanes, N. BjØrner, L. Nachmanson, and S. Bereg.

Monadic decomposition. In International Conference on Com-

puter Aided Verification, pages 628–645. Springer, 2014.

[24] M. Veanes, T. Mytkowicz, D. Molnar, and B. Livshits. Data-

parallel string-manipulating programs. In ACM SIGPLAN

Notices, volume 50, pages 139–152. ACM, 2015.

[25] D. M. Yellin. Attribute Grammar Inversion and Source-to-

source Translation. Springer-Verlag New York, Inc., New

York, NY, USA, 1988. ISBN 0-387-19072-4.

389

https://www.sans.org/security-resources/malwarefaq/wnt-unicode
https://www.sans.org/security-resources/malwarefaq/wnt-unicode

	Introduction
	Motivating Example
	The Genic Language
	Alphabet Theories
	Auxiliary Functions
	List Transformations
	Operations

	Checking s-EFT Injectivity
	A Theory of Injectivity for s-EFTs
	Checking Transition-Injectivity
	Checking Path-Injectivity

	Inverting s-EFTs
	Inverting s-EFTs in Genic
	Evaluation
	Effectiveness of Genic
	Detailed Evaluation
	Limitations

	Related Work
	Conclusion

