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Abstract

We consider the problem of automatically establishing that
a given syntax-guided-synthesis (SyGuS) problem is unre-
alizable (i.e., has no solution). We formulate the problem of
proving that a SyGuS problem is unrealizable over a finite set
of examples as one of solving a set of equations: the solution
yields an overapproximation of the set of possible outputs
that any term in the search space can produce on the given
examples. If none of the possible outputs agrees with all of
the examples, our technique has proven that the given SyGuS
problem is unrealizable. We then present an algorithm for
exactly solving the set of equations that result from SyGuS
problems over linear integer arithmetic (LIA) and LIA with
conditionals (CLIA), thereby showing that LIA and CLIA
SyGuS problems over finitely many examples are decidable.
We implement the proposed technique and algorithms in
a tool called nay. nay can prove unrealizability for 70/132
existing SyGuS benchmarks, with running times comparable
to those of the state-of-the-art tool nope. Moreover, nay can
solve 11 benchmarks that nope cannot solve.

CCS Concepts: • Software and its engineering→ Auto-

matic programming; • Theory of computation→ Ab-

straction.
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1 Introduction

The goal of program synthesis is to find a program in some
search space that meets a specification—e.g., satisfies a set
of examples or a logical formula. Recently, a large family of
synthesis problems has been unified into a framework called
syntax-guided synthesis (SyGuS). A SyGuS problem is spec-
ified by a regular-tree grammar that describes the search
space of programs, and a logical formula that constitutes
the behavioral specification. Many synthesizers support a
specific format for SyGuS problems [1], and compete in an-
nual synthesis competitions [2]. These solvers are now quite
mature and are finding a wealth of applications [9, 12].
While existing SyGuS synthesizers are good at finding a

solution when one exists, there has been only a small amount
of work on methods to prove that a given SyGuS problem
is unrealizable—i.e., the problem does not admit a solution.
The problem of proving unrealizability arises in applications
such as pruning infeasible paths in symbolic-execution en-
gines [16] and computing syntactically optimal solutions
to SyGuS problems [13]. However, proving that a SyGuS
problem is unrealizable is particularly hard and, in general,
undecidable [6]. When a SyGuS problem is realizable, any
search technique that systematically explores the infinite
search space of possible programs will eventually identify a
solution to the synthesis problem. In contrast, proving that a
problem is unrealizable requires showing that every program
in the infinite search space fails to satisfy the specification.
Although we cannot hope to have a complete algorithm

for establishing unrealizability, the goal of this paper is to de-
velop a framework for solving the kinds of problems that ap-
pear in practice. Our framework can be used in tandem with
existing synthesizers that use the counterexample-guided in-

ductive synthesis (CEGIS) approach, in which the synthesizer
iteratively builds a set of input examples and finds programs
consistent with the examples.

Our approach builds on the observation that unrealizabil-
ity of a SyGuS problem sy can be proved by showing, for
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some finite set of examples E, that syE—the same problem
with the weaker specification of merely satisfying the exam-
ples in E—is unrealizable [11]. We combine this observation
with techniques from the abstract-interpretation literature
to show that determining realizability of a linear integer
arithmetic (LIA) SyGuS problem over a finite set of examples
is actually decidable. Our work gives a decision procedure
to show unrealizability for a syE instance, whereas the prior
work by Hu et al. [11] reduced the problem to a program-
reachability problem. In their approach, if an assertion inside
a constructed program is shown to be valid, then the original
problem is unrealizable. The issue with prior work is that
the resulting reachability problem is passed to an incomplete
solver that may not terminate or may only return unknown.
Even though we consider a finite set of examples, show-

ing realizability is non-trivial because the grammar can still
generate an infinite set of terms. The main idea of this paper
is to use an abstract domain to overapproximate the possibly
infinite set of outputs that the terms derivable from each non-
terminal of the grammar of syE can produce on examples E.
The overapproximation is formalized using grammar-flow-

analysis (GFA), a method that extends dataflow analysis to
grammars [17]. We define a GFA problem whose solution
associates an overapproximating abstract-domain value with
each non-terminal of the SyGuS grammar. We then use the
notion of symbolic concretization [20] to represent the ab-
stract values as logical formulas, which get combined with
the SyGuS specification to produce an SMT query whose
result can imply that the original problem is unrealizable.

Using this framework, a variety of abstract domains can be
used to show unrealizability for arbitrary SyGuS problems.
However, we also give a particular instantiation of the frame-
work to obtain a decision procedure for (un)realizability of LIA
SyGuS problems over a finite set of examples. The key to this
reduction is the use of the abstract domain of semi-linear sets.
We show that the GFA problem over semi-linear sets can be
solved to yield a semi-linear set that exactly captures the set
of possible outputs of the SyGuS grammar. The problem syE

is unrealizable if and only if the semi-linear set for the start
non-terminal of the grammar contains no value that satisfies
the specification. We extend this result to SyGuS problems
whose grammar contains LIA terms and conditionals (CLIA).

Our work makes the following three contributions:
(1) We reduce the problem of proving unrealizability of a
SyGuS problem, where the specification is given by examples,
to the problem of solving a set of equations in an abstract
domain (§2). The correctness of our reduction is based on
the framework of grammar-flow analysis (§3 and §4).
(2) We show that the equations resulting from our reduc-
tion can be solved exactly for SyGuS problems in which the
grammars only generate terms in LIA (§5) and CLIA (§6),
therefore yielding the first decision procedures for LIA and
CLIA SyGuS problems over a finite set of examples.

(3) We implement our technique in a tool, nay (§7). nay can
prove unrealizability for 70/132 benchamrks that were used
to evaluate the state-of-the-art tool nope. In particular, nay
can solve 11 benchmarks that nope could not solve (§8).
§9 discusses related work. Proofs and additional details

can be found in the supplementary material.

2 Illustrative Examples

SyGuS problems in LIA. Consider the SyGuS problem in
which the goal is to create a term ef whose meaning is
ef (x) := 2x + 2, but where ef is in the language of the fol-
lowing regular tree grammar G1:1

Start ::= Plus(Var(x),Var(x),Var(x), Start) | Num(0) (1)
This problem is unrealizable because every term in the gram-
mar G1 is of the form 3kx (with k ≥ 0).
A typical synthesizer tries to solve this problem using a

counterexample-guided inductive synthesis (CEGIS) strategy
that searches for a program consistent with a finite set of
examples E. Here, let’s assume that the initial input example
in E is i1, which has x set to 1—i.e i1(x) = 1. For this example,
the input i1 corresponds to the output o1 = 4.

In this particular case, there exists no term in the grammar
G1 that is consistent with the example i1. To prove that this
grammar does not contain a term that is consistent with the
specification on the example i1, we compute for each nonter-
minal A a value n1,E (A)

2 that describes the set of values any
term derived from A can produce when evaluated on i1—i.e.,
γ (n1,E (A)) ⊇ {JeK(i1) | e ∈ LG1 (A)}, where, as usual in ab-
stract interpretation, γ denotes the concretization function.
As we show in §4, for n1,E (A) to be an overapproximation
of the set of output values that any term derived from A can
produce for the current set of examples E, it should satisfy
the following equation:
n1,E (Start) = JPlusK#

E (JVar(x)K
#
E , JVar(x)K

#
E , JVar(x)K

#
E ,

n1,E (Start)) ⊕ JNum(0)K#
E .

(2)

For every term e , the notation JeK#
E denotes an abstract se-

mantics of e—i.e., JeK#
E overapproximates the set of values e

can produce when evaluated on the examples in E—and ⊕
denotes the join operator, which overapproximates ∪.
In this example, we represent each n1,E (A) using a semi-

linear set—i.e., a set of terms {l1, . . . , ln}, where each li is
a term of the form c + λ1c1 + · · · + λkck (called a linear

set), the values λi ∈ N are parameters, and the values
c j ∈ Z are fixed coefficients. We then replace each JeK#

E
with a corresponding semi-linear-set interpretation. For ex-
ample, JVar(x)K#

E is the vector of inputs E projected onto the

1 For readability, we allow grammars to contain n-ary Plus symbols and
trees. In the next sections, we will write the grammar G1 as follows:

Start ::= Plus(S1, Start) | Num(0) S1 ::= Plus(S2, Var(x ))
S2 ::= Plus(S3, Var(x )) S3 ::= Var(x ).

2 This section uses a simplified notation for readability. In §4 the term
n1,E (A) is written nG1E where G1 is used to denote a GFA problem.
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x coordinate—i.e., JVar(x)K#
E = {i1(x)} = {1}. We rewrite

JPlusK#
E as ⊗, with x ⊗ y being the semi-linear set represent-

ing {a + b | a ∈ x,b ∈ y}
We rewrite Eqn. (2) to use semi-linear sets:
n1,E (Start) =

(
{1} ⊗ {1} ⊗ {1} ⊗ n1,E (Start)

)
⊕ {0}, (3)

where x ⊕ y is the semi-linear set representing {a | a ∈
x ∨ a ∈ y}. These operations can be performed precisely.

In this example, an exact solution to this set of equations
is the semi-linear set n1,E (Start) = {0+ λ3}, which describes
the set of all possible values produced by any term in gram-
mar G1 for the set of examples E = ⟨i1⟩. In particular, such
a solution can be computed automatically [10].This SyGuS
problem does not have a solution, because none of the val-
ues in n1,E (Start) meets the specification on the given input
example, i.e., the following formula is not satisfiable:

∃λ.[i1 = 1 ∧ o1 = 0 + λ3 ∧ λ ≥ 0] ∧ o1 = 2i1 + 2. (4)

SyGuS problems in CLIA. For grammars with a more complex
background theory, such as CLIA (LIA with conditionals), it
may be more complicated to compute an overapproximation
of the possible outputs of any term in the grammar. For
example, consider the SyGuS problem where once again the
goal is to synthesize a term whose meaning is ef (x) := 2x+2,
but now in the more expressive CLIA grammar G2:

Start ::= IfThenElse(BExp, Exp3, Start) | Exp2 | Exp3
BExp ::= LessThan(Var(x),Num(2))

| LessThan(Num(0), Start) | And(BExp,BExp)
Exp2 ::= Plus(Var(x),Var(x), Exp2) | Num(0)
Exp3 ::= Plus(Var(x),Var(x),Var(x), Exp3) | Num(0)

(5)

Consider again the input example i1=1 with output o1=4.
The term Plus(Var(x),Var(x), Plus(Var(x),Var(x),Num(0)))
in this grammar is correct on the input i1. A SyGuS solver
that enumerates all terms in the grammar will find this term,
test it on the given specification, see that it is not correct
on all inputs, and produce a counterexample. In this case,
suppose that the counterexample is i2 where i2(x)=2 with
the corresponding output o2=6. There is no term in G2 that
is consistent with both of these examples, and we will prove
this fact like we did before, that is, by solving the following
set of equations:3

n2,E (Start) = JIfThenElseK#
E (n2,E (BExp),n2,E (Exp3),

n2,E (Start)) ⊕ n2,E (Exp2) ⊕ n2,E (Exp3)
n2,E (BExp) = JLessThanK#

E (JVar(x)K
#
E , JNum(2)K

#
E )

⊕ JLessThanK#
E (JNum(0)K

#
E ,n2,E (Start))

⊕ JAndK#
E (n2,E (BExp),n2,E (BExp))

n2,E (Exp2) = JPlusK#
E (JVar(x)K

#
E , JVar(x)K

#
E ,n2,E (Exp2))

⊕ JNum(0)K#
E

n2,E (Exp3) = JPlusK#
E (JVar(x)K

#
E , JVar(x)K

#
E , JVar(x)K

#
E ,

n2,E (Exp3)) ⊕ JNum(0)K#
E

(6)

3 Note that the ⊕ symbol is overloaded. On the right-hand side of
n2,E (BExp), ⊕ is an operation on an abstract Boolean value, whereas the ⊕
on the right-hand-side of the other equations is an operation on semi-linear
sets. Both operations denote set union, and are handled in a uniform way
by operating over a multi-sorted domain of Booleans and semi-linear sets.

Because we want to track the possible values each term can
have for both examples, we need a domain that summarizes
vectors of values. Luckily, semi-linear sets can easily be ex-
tended to vectors—i.e., each li in a semi-linear set sl is a linear
set of the form { ®v0+λ1 ®v1+ · · ·+λk ®vk | λi ∈ N} (with ®vj∈Zk ).
Second, because some nonterminals are Boolean-valued and
some are integer-valued, we need different representations
of the possible outputs of each nonterminal.Wewill use semi-
linear sets for n2,E (Start), n2,E (Exp2) and n2,E (Exp3), and a
set of Boolean vectors for n2,E (BExp)—e.g., n2,E (BExp) could
be a set {(t, f), (t, t)}, which denotes that a Boolean expres-
sion generated by BExp can be true for i1 and false for i2, or
true for both. We can now instantiate all constant terminals
and variable terminals with their abstraction, e.g., JVar(x)K#

E
with {(1, 2)} and JNum(0)K#

E with {(0, 0)}. We then start solv-
ing part of our equations by observing that Exp2 and Exp3
are only recursive in themselves. Therefore, we can com-
pute their summaries independently, obtaining n2,E (Exp2) =
{(0, 0) + λ(2, 4)},n2,E (Exp3) = {(0, 0) + λ(3, 6)}. We can now
replace all instances of n2,E (Exp2) and n2,E (Exp3), and ob-
tain the following set of equations:

n2,E (Start) = JIfThenElseK#
E (n2,E (BExp), {(0, 0) + λ(3, 6)},

n2,E (Start)) ⊕ {(0, 0) + λ(2, 4)}
⊕ {(0, 0) + λ(3, 6)}

n2,E (BExp) = {(t, f)} ⊕ JLessThanK#
E ({(0, 0)},n2,E (Start))

⊕ JAndK#
E (n2,E (BExp),n2,E (BExp))

(7)

We now have to face the problem of solving equations over
n2,E (BExp) and n2,E (Start), which represent different types
of values and are mutually recursive. Because the domain
of n2,E (BExp) is finite (it has at most 2 |E | elements), we can
solve the equations iteratively until we reach a fixed point
for both variables. In particular, we initialize all variables to
the empty set and evaluate right-hand sides, so n02,E (BExp) =
{(t, f)} (the superscript denotes the iteration the algorithm is
in). We can replace n2,E (BExp) with the value of n02,E (BExp)
in the equation for n12,E (Start) as follows:

n12,E (Start) = JIfThenElseK#
E ({(t, f)}, {(0, 0) + λ(3, 6)},

n12,E (Start)) ⊕ {(0, 0) + λ(2, 4)}
⊕ {(0, 0) + λ(3, 6)}

(8)

At this point, we face a new problem: we need to express the
abstract semantics of IfThenElse using the semi-linear set
operators ⊕ and ⊗. In particular, we would like to produce a
semi-linear set in which, for each vector, some components
come from the semi-linear set for the then-branch (i.e., values
corresponding to inputs for which the IfThenElse guard was
true), and some components come from the semi-linear set
for the else-branch (i.e., values corresponding to inputs for
which the IfThenElse guard was false). We overcome this
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problem by rewriting the above equations as follows:
n12,E (Start

(t,t)) = {(0, 0) + λ(3, 0)} ⊗ n12,E (Start
(f,t))

⊕ {(0, 0) + λ(2, 4)} ⊕ {(0, 0) + λ(3, 6)}
n12,E (Start

(f,t)) = {(0, 0) + λ(0, 0)} ⊗ n12,E (Start
(f,t))

⊕ {(0, 0) + λ(0, 4)} ⊕ {(0, 0) + λ(0, 6)}

(9)

Intuitively, n12,E (Start
(f,t)) is the abstraction obtained by only

executing the expressions generated by Start on the second
example and leaving the output of the first example as 0
to represent the fact that only the example i2 followed the
else branch of the IfThenElse statement. Similarly, the semi-
linear set {(0, 0) + λ(3, 0)} zeroes out the second component
of the semi-linear set appearing in the then branch. The
value of n12,E (Start

(t,t)) (which is also the value of n12,E (Start)),
is then computed by summing (⊗) together the then and
else values. This set of equations is now in the form that we
can solve automatically—i.e., it only involves the operations
⊕ and ⊗ over semi-linear sets—and thus we can compute
the value of n12,E (Start). We now plug that value into the
equation for BExp and compute the value of n12,E (BExp),

n12,E (BExp) = {(t, f)} ⊕ JLessThanK#
E ({(0, 0)},n

1
2,E (Start))

⊕ JAndK#
E (n

1
2,E (BExp),n

1
2,E (BExp))

(10)

Because n12,E (BExp) has a finite domain, equations over such
a domain can be solved iteratively, in this case yielding the
fixed-point value n12,E (BExp) = {(t, f), (t, t), (f, f)}. We now
plug this solution into the equation for Start and compute
the value of n22,E (Start) similarly to how we computed that of
n12,E (Start). We then use n22,E (Start) to compute n22,E (BExp)
and discover thatn22,E (BExp) = n

2
2,E (BExp). Becausewe have

reached a fixed point, we have found the set of possible
values the grammar can output on our set of examples, i.e.,
the abstraction n12,E (Start) captures all possible values the
grammarG2 can output on E. By plugging such values in the
original formula similarly to what we did in Eqn. (4) we get
that no output set satisfies the formula on the given input
examples, and therefore this SyGuS problem is unrealizable.

3 Background

In this section, we recall the definition of syntax-guided
synthesis over a finite set of examples.

3.1 Trees and Tree Grammars

A ranked alphabet is a tuple (Σ, rkΣ) where Σ is a finite set of
symbols and rkΣ : Σ→ N associates a rank to each symbol.
For everym ≥ 0, the set of all symbols in Σwith rankm is de-
noted by Σ(m). In our examples, a ranked alphabet is specified
by showing the set Σ and attaching the respective rank to
every symbol as a superscript—e.g., Σ = {Plus(2),Var (x)(0)}.
(For brevity, the superscript is sometimes omitted.) We use
TΣ to denote the set of all (ranked) trees over Σ—i.e., TΣ is
the smallest set such that (i) Σ(0) ⊆ TΣ, (ii) if σ (k) ∈ Σ(k ) and

t1, . . . , tk ∈ TΣ, then σ (k )(t1, · · · , tk ) ∈ TΣ. In what follows,
we assume a fixed ranked alphabet (Σ, rkΣ).

Definition 3.1 (Regular-Tree Grammar). A regular tree

grammar (RTG) is a tuple G = (N , Σ, S, δ ), where N is a
finite set of nonterminal symbols of arity 0; Σ is a ranked
alphabet; S ∈ N is an initial nonterminal; and δ is a finite
set of productions of the form A0 → σ (i)(A1, . . . ,Ai ), where
for 1 ≤ j ≤ i , each Aj ∈ N is a nonterminal.

Given a tree t ∈ TΣ∪N , applying a production r = A→ β
to t produces the tree t ′ resulting from replacing the left-
most occurrence of A in t with the right-hand side β . A tree
t ∈ TΣ is generated by the grammarG—denoted by t ∈ L(G)—
iff it can be obtained by applying a sequence of productions
r1 · · · rn to the tree whose root is the initial nonterminal
S . δA ⊆ δ denotes the set of productions associated with
nonterminal A, and ΣA := {σ (i) | A→ σ (i)(A1, ...,Ai ) ∈ δA}.

3.2 Syntax-Guided Synthesis

A SyGuS problem is specified with respect to a background
theory T—e.g., linear arithmetic—and the goal is to synthe-
size a function f that satisfies two constraints provided by
the user. The first constraint,ψ (f (x̄), x̄), describes a semantic

property that f should satisfy. The second constraint limits
the search space S of f , and is given as a set of terms specified
by an RTG G that defines a subset of all terms in T .

Definition 3.2 (SyGuS). A SyGuS problem over a back-
ground theory T is a pair sy = (ψ (f , x̄),G), where G is a
regular tree grammar that only contains terms in T—i.e.,
L(G) ⊆ T—andψ (f , x̄) is a Boolean formula constraining the
semantic behavior of the synthesized program f .4
A SyGuS problem is realizable if there exists an expres-

sion e ∈ L(G) such that ∀x̄ .ψ (JeK, x̄) is true. Otherwise we
say that the problem is unrealizable.

Theorem 3.3 (Undecidability [6]). Given a SyGuS problem

sy, it is undecidable to check whether sy is realizable.

Many SyGuS solvers do not solve the problem of finding
a term that satisfies the specification on all inputs. Instead,
they look for an expression that satisfies the specification
on a finite example set E. If such a term is found, it is then
checked if it can be generalized to all inputs.We take a similar
approach to show unrealizability.

Definition 3.4. Given a SyGuS problem sy = (ψ (f , x̄),G)
and a finite set of inputs E = ⟨i1, . . . , in⟩, let syE :=
(ψ E (f ),G) denote the problem of finding a term e ∈ L(G)
such that JeK is only required to be correct on the examples in
E. Let JeKE denote the vector of outputs ⟨JeK(i1), . . . , JeK(in)⟩

4In this paper, we focus on single-invocation SyGuS problems for which the
formula ψ only contains instances of the function f that are called on the
input x̄ . We write ψ (f , x̄ ) instead of ψ (f (x̄ ), x̄ ) for brevity.
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(= ⟨o1, . . . ,on⟩) produced by e on E. A syE problem is real-
izable ifψ E (JeKE )

def
=
∧

i j ∈E ψ (JeK(i j ), i j ) holds, and unreal-
izable otherwise.

Lemma 3.5 ([11]). If syE is unrealizable then sy is unrealiz-

able.

Example 3.6. The regular tree grammar of all linear integer
arithmetic (LIA) terms is
TLIA ::= Plus(TLIA,TLIA) | Minus(TLIA,TLIA) | Num(c) | Var(x)
where c ∈ Z, and x ∈ V is an input variable to the function
being synthesized. The semantics of these productions is as
expected, and is extended to terms in the usual way.
In the case of a syE instance, we consider the restricted

semantics of LIA with respect to a set of examples E =
⟨i1, . . . , in⟩, given by a function J·KE : TLIA → Zn . J·KE maps
an LIA term to the corresponding output vector produced
by evaluating the term with respect to all of the examples in
E. Let µE : V → Zn be the function that projects the inputs
onto the x coordinate—i.e., µE (x) = ⟨i1(x), . . . , in(x)⟩. The
semantics of the LIA operators with respect to an example
set E is then defined as follows:

JPlusKE (®v1, ®v2) := ®v1 + ®v2 JNum(c)KE := ⟨c, ..., c⟩
JMinusKE (®v1, ®v2) := ®v1 − ®v2 JVar(x)KE := µE (x)

where + (resp. −) denotes the component-wise addition (resp.
subtraction) of two vectors. J·KE : TLIA → Zn is extended to
terms in the usual way. For brevity, we overload the term
“LIA” to refer both to the logic LIA and to LIA grammars—i.e.,
grammars over the alphabet {Plus,Minus,Num(c),Var(x)}.

In §4.3, we present an algorithm based on Counterexample-
Guided Inductive Synthesis (CEGIS) to show unrealizability
of a SyGuS problem, sy, by showing unrealizability of a syE
problem. The idea is to check unrealizability of syE for some
set E. If syE is unrealizable, the algorithm reports unrealiz-
able, otherwise it generates a new example, in+1, adds it to
E ′ = E∪{in+1}, and tries to prove unrealizability of syE

′ , and
so on. In §5, we show that the unrealizability problem for
a syE instance is decidable for LIA grammars. However, we
note that there are SyGuS problems for which CEGIS-style
algorithms cannot prove unrealizability [11]. Despite this
negative result, we will show that a CEGIS algorithm can
prove unrealizability for many SyGuS instances (§8).

4 Proving Unrealizability using Grammar

Flow Analysis

In this section, we present a formalism called grammar flow

analysis (GFA) [17], which connects regular tree grammars
to equation systems, and show how to use GFA to prove un-
realizability of SyGuS problems for finitely many examples.

4.1 Grammar Flow Analysis

GFA is a formalism used for equipping the language of a
grammar with a semantics in which the meaning of a tree
is a value from a (complete) combine semilattice.

Definition 4.1 (Combine Semilattice). A combine semilat-

tice is an algebraic structureD = (D, ⊕), where ⊕ : D×D →
D is a binary operation on D (called “combine”) that is com-
mutative, associative, and idempotent. A partial order, de-
noted by ⊑, is induced on the elements of D as follows: for
all d1,d2 ∈ D,d1 ⊑ d2 iff d1 ⊕ d2 = d2. A combine semilattice
is complete if it is closed under infinite combines.

Definition 4.2. [GFA] [17, 19] Let D = (D, ⊕) be a com-
plete combine semilattice. Recall that in a regular-tree gram-
mar G = (N , Σ, S, δ ), δ is a set of productions of the form

X0 → д(X1, . . . ,Xk ), with д ∈ Σ.
In a GFA problem G = (G,D), each production is associ-

ated with a production function J·K# that provides an interpre-
tation of д—i.e., JдK# : Dk → D. J·K# is extended to trees in
L(G) in the usual way, by thinking of each tree e ∈ L(G) as a
term over the operations JдK#. Term e denotes a composition
of functions, and corresponds to a unique value in D, which
we call JeK#

G
(or simply JeK# when G is understood).

Let LG (X ) denote the trees derivable from a nonterminalX .
The grammar-flow-analysis problem is to overapproximate,
for each nonterminal X , the combine-over-all-derivations

valuemG(X ) defined as follows:

mG(X ) =
⊕

e ∈LG (X )

JeK#
G .

We can also associate G with a system of mutually recur-
sive equations, where each equation has the form

nG(X0) =
⊕

X0→д(X1, ...,Xk )∈δ

JдK#(nG(X1), . . . ,nG(Xk )). (11)

We use nG(X ) to denote the value of nonterminal X in the
least fixed-point solution of G’s equations.

In essence, GFA is about two ways of folding the semantics
of terms onto nonterminals:
Derivation-tree based: mG(X ) defines the semantics of a
term in a compositional fashion, and folds all terms in
LG (X ) onto nonterminal X by combining (⊕) their values.

Equational: nG(X ) obtains a value for X by using the val-
ues of “neighboring” nonterminals—i.e., nonterminals that
appear on the right-hand side of productions of X .

Furthermore, GFA ensures that for all X ,mG(X ) ⊑ nG(X ).
The relevance of GFA for showing unrealizability is that

whenever an RTG G is recursive, L(G) is an infinite set
of trees. Thus, in general, there is not a clear method to
compute the combine-over-all-derivations valuemG(X ) =⊕

e ∈L(G)JeK
#
G
. However, we can employ fixed-point finding

procedures to compute nG(X ). BecausemG(X ) ⊑ nG(X ), our
computed value will be a safe overapproximation.
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However, in some cases we have a stronger relationship
betweenmG(X ) and nG(X ). A production function JдK# is
infinitely distributive in a given argument position if

JдK#(. . . ,
⊕
j ∈J

x j , . . .) =
⊕
j ∈J

JдK#(. . . , x j , . . .)

where J is a finite or infinite index set.

Theorem 4.3. [17, 19] If every production function JдK#
, д ∈

Σ, is infinitely distributive in each argument position, then for

all nonterminals X ,mG(X ) = nG(X ).

This theorem is key to our decision procedures for LIA
and CLIA grammars, because the domain of semi-linear sets
has this property (§5.3).

4.2 Connecting GFA to Unrealizability

In this section, we show how GFA can be used to check
whether a SyGuS problem with finitely many examples E is
unrealizable. Intuitively, we use GFA to overapproximate the
set of values the expressions generated by the grammar can
yield when evaluated on a certain set of input examples E.

Definition 4.4. Let syE = (ψ E ,G) be a SyGuS problem with
example set E, regular-tree grammar G = (N , Σ, S, δ ), and
background theory T . Let J·KE be the semantics of trees in
LG (X ) obtained via T , when µE (·) is used to interpret occur-
rences of terminals of G that represent arguments to the
function to be synthesized in the SyGuS problem.
Let D = (D, ⊕) be a complete combine semilattice for

which there is a concretization function γ : D → Val
|E | ,

where Val is the type of the output values produced by
the function to be synthesized in the SyGuS problem. Let
GE = (G,D) be a GFA problem that uses µE (·) to interpret
occurrences of terminals of G that represent arguments to
the function to be synthesized. Then
1. GE is a sound abstraction of the semantics of LG (X ) if

γ (mGE (X )) ⊇ {JeKE | e ∈ LG (X )}.
2. GE is an exact abstraction of the semantics of LG (X ) if

γ (mGE (X )) = {JeKE | e ∈ LG (X )}.

By using such abstractions, including the one described
in §2 based on semi-linear sets (see §5 and §6), the results
obtained by solving a GFA problem can imply that a SyGuS
problem with finitely many examples E is unrealizable.
The idea is that, given a SyGuS problem sy

E = (ψ E ,G)
with example set E, regular-tree grammar G = (N , Σ, S, δ ),
and background theory T , we can (i) solve the GFA problem
GE = (G,D) with some complete domain semilattice D =
(D, ⊕) to obtain an overapproximation of γ (mGE (S)), and
then (ii) check if the approximation is disjoint from the spec-
ification, i.e., the predicate ®o ∈ γ (mGE (S)) ∧

∧
i j ∈E ψ (®oj , i j ) is

unsatisfiable.
Checking that the previous predicate holds can be opera-

tionalized with the use of symbolic concretization [20] and

an SMT solver. We view an abstract domainD as (implicitly)
a logic fragment LD of some general-purpose logic L, and
each abstract value as (implicitly) representing a formula
in LD . The connection between D and LD can be made
explicit: we say that γ̂ is a symbolic-concretization operation

for D if γ̂ (·, ®o) : D → LD maps each a ∈ D to a formula
with free variables ®o, such that [[̂γ (a, ®o)]]L = γ (a). If γ̂ exists,
we say that L supports symbolic concretization for D.

Theorem 4.5. Let sy
E = (ψ E ,G) be a SyGuS problem with

example set E, regular-tree grammar G = (N , Σ, S, δ ), and
background theory T . Let D = (D, ⊕) be a complete combine

semilattice, and GE = (G,D) be a grammar-flow-analysis

problem over regular-tree grammar G. Assume the theory T
supports symbolic concretization of D. Let P be the property

P
def
= γ̂ (nGE (S), ®o) ∧

∧
i j ∈E

ψ (®oj , i j ).

1. Suppose that GE is a sound abstraction of the semantics

of L(G) with respect to background theory T . Then sy
E
is

unrealizable if P is unsatisfiable.

2. Suppose that GE is an exact abstraction of the semantics

of L(G) with respect to background theory T . Then sy
E
is

unrealizable if and only if P is unsatisfiable.

4.3 Algorithm for Showing Unrealizability

Alg. 1 summarizes our strategy for showing unrealizability.

Example 4.6. Recall the SyGuS problem, from §2, of syn-
thesizing a function ef (x) = 2x + 2 using the grammar from
Eqn. (1). Suppose that we call Alg. 1 with the example set
E = {1}, and use the abstract domain of semi-linear sets.
Alg. 1 first creates a GFA problem GE , which is shown as
the recursive equation system given as Eqn. (3). The solu-
tion of the GFA problem then gets assigned to s at line (2).
In this example, s is the semi-linear set {0 + λ3}. This set
can be symbolically concretized as the set of models of
∃λ ≥ 0.o1 = 0 + λ3. Then, on line (3) the LIA formula
∃λ ≥ 0.o1 = 0 + λ3 ∧ o1 = 2i1 + 2 ∧ i1 = 1 is passed to an
SMT solver, which will return unsat.

GFA in Practice. So far we have been vague about how
GFA problems are computationally solved. In general, there

Algorithm 1: Checking whether syE is unrealizable
Function :CheckUnrealizable(G,ψ , E)
Input :Grammar G, specificationψ , set of examples E

1 GE ← (G,D) // GFA problem from G and E (Def. 4.4) ;
2 s ← nGE (Start) // Compute solution to the GFA problem;
3 if γ̂ (s, ®o) ∧

∧
i j ∈E ψ (oj , i j ) is unsatisfiable then

4 return Unrealizable

5 return

{
Realizable, GE is an exact abstraction
Unknown, otherwise
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is no universal method. The performance and precision of a
method depends on the choice of abstract domain D.
Kleene iteration. Traditionally one would employ Kleene it-
eration to find a least fixed-point, nGE (X ). However, Kleene
iteration is only guaranteed to converge to a least fixed-point
if the domain D satisfies the finite-ascending-chain condi-
tion. For example, the domain of predicate abstraction has
this property, and therefore Alg. 1 could be instantiated with
Kleene iteration and predicate abstraction to attempt to show
unrealizabilty, for arbitrary SyGuS problems. However, in
this paper we are focused on SyGuS problems using integer
arithmetic, which does have infinite ascending chains. Thus,
while predicate abstraction, and other domains with finite
height, can provide a sound abstraction of LIA problems,
they can never provide an exact abstraction. Alternatively,
we could still use Kleene iteration on a domain with infinite
ascending chains if we provide a widening operator, to en-
sure convergence [7]. The issue with this strategy is that
we are not guaranteed to achieve a least fixed-point. Such a
method would still be sound, but necessarily incomplete.
Constrained Horn clauses. Another incomplete, but general,
method would employ the use of the domain of constrained
Horn clauses, (Φ,∨). The set Φ contains all first-order predi-
cates over some theory. The order of predicates is given by
P1(®v) ≤ P2(®v) iff P1(®v) → P2(®v), for all models ®v . The pro-
duction functions J·K# of this GFA problem get translated to
constraints on the predicates. The advantage of using (Φ,∨)
is that the resulting GFA problem is a Horn-clause program,
which we can then pass to an off-the-shelf, incomplete Horn-
clause solver, such as the one implemented in Z3 [8]. In this
case, Alg. 1 would be slightly modified. Horn-clause solvers
do not provide an abstract description of the nonterminals.
Instead they determine satisfiabilty of a set of Horn clauses
with respect to a particular query. Therefore, in this case
Alg. 1 would use the formula in line (3) as the Horn-clause
query, instead of having a separate SMT check.

Example 4.7. The GFA problem in Eqn. (2) can be encoded
using the following constrained Horn clause:
∀v,v ′. Start(v) ← (v = 1+1+1+v ′∧Start(v ′))∨v = 0 (12)

A Horn-clause solver can prove that the LIA SyGuS prob-
lem from §2 is unrealizable by showing that the following
formula is unsatisfiable: Eqn. (12) ∧ Start(o1) ∧ o1 = 2i1 + 2.

Newton’s Method. In the next two sections, we provide spe-
cialized complete methods to solve GFA problems over LIA
and CLIA grammars using Newton’s method [10]. Our cus-
tom methods are limited to the case of LIA and CLIA gram-
mars, but we show that the resulting solution is exact. No
prior method has this property for LIA and CLIA grammars.
Consequently, our methods guarantee that not only does the
check on line (3) imply unrealizability on a set of examples
if the solver returns unsat, but also realizability if the solver

returns sat. The latter property is important because it en-
sures that the current set of examples is insufficient to prove
unrealizability, and we must generate more.

5 Proving Unrealizability of LIA SyGuS

Problems with Examples

In this section, we instantiate the framework underlying
Alg. 1 to obtain a decision procedure for (un)realizability of
SyGuS problems in linear integer arithmetic (LIA), where the
specification is given by examples (as defined in Ex. 3.6). First,
we review the conditions for applying Newton’s method for
finding the least fixed-point of a GFA problem over a commu-
tative, idempotent, ω-continuous semiring (§5.1). We then
show that the domain of semi-linear sets can be formulated
as such a problem. This approach provides a method to com-
pute nGE (Start) for LIA SyGuS problems. We then show that
the domain of semi-linear sets is exact and infinitely dis-

tributive (§5.3). Finally, we show that semi-linear sets admit
symbolic concretization (§5.4). Thus, by Thm. 4.5, we obtain
a decision procedure for checking (un)realizability.

5.1 Solving Equations using Newton’s Method

We provide background definitions on semirings and New-
ton’s method for solving equations over certain semirings.

Definition 5.1. A semiring S = (D, ⊕, ⊗, 0, 1) consists of
a set of elements D equipped with two binary operations:
combine (⊕) and extend (⊗). ⊕ and ⊗ are associative, and have
identity elements 0 and 1, respectively. ⊕ is commutative,
and ⊗ distributes over ⊕. For every x ∈ D, x ⊗ 0 = 0 = 0 ⊗ x .

A semiring is commutative if for all a,b ∈ D, a ⊗ b = b ⊗ a.
An ω-continuous semiring has a Kleene-star operator

~ : D → D defined as follows: a~ = ⊕i ∈N ai .
A semiring is idempotent if for all a ∈ D, a ⊕ a = a.

Recently, Esparza et al. [10] developed an iterative method,
called Newtonian Program Analysis (NPA), which solves a set
of semiring equations by an iterative computation.

Lemma 5.2. [Newton’s Method [10, Theorem 7.7]] For a sys-

tem of equations in N variables over a commutative, idempo-

tent, ω-continuous semiring, NPA reaches the least fixed point

after at most |N | iterations.

Lem. 5.2 is a powerful result because it applies even in
cases when the semiring has infinite ascending chains.

5.2 Removing Non-Commutative Operators

Our first step towards using GFA to generate equations
that can be solved using Newton’s method removes non-
commutative operators from the grammar.

We define the language LIA+,
TLIA+ ::= Plus(TLIA+,TLIA+ ) | Num(c) | Var(x) | NegVar(x)

where the semantics of the Plus, Num, and Var operators are
the same as for LIA, and JNegVar(x)KE := −µE (x). We say a
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regular-tree grammar is an LIA+ grammar if its alphabet is
{Plus,Num(c),Var(x),NegVar(x)}.
The next example shows how our algorithm uses a func-

tion h to push negations to the leaves of LIA terms to yield
an LIA+ grammar.

Example 5.3. Consider the LIA grammar G:
Start ::= Minus(Start, Start) | 1 | x

The following LIA+ grammar h(G) is equivalent to G:
Start ::= Plus(Start, Start−) | Num(1) | Var(x)

Start
− ::= Plus(Start−, Start) | Num(−1) | NegVar(x).

5.3 Grammar Flow Analysis using Semi-Linear Sets

Thanks to §5.2, we can assume that the SyGuS grammar G
only produces LIA+ terms. In this section, we use grammar-
flow analysis to generate equations such that the solutions
to the equations assign a semi-linear set to each nonterminal
X that, for the finitely many examples in E, exactly describes
the set of possible values produced by any term in LG (X ).
We start by defining the complete combine semilattice
(SL, ⊕) of semi-linear sets (see [10, §2.3.3] and [5, §3.4.4]).
We then use them, together with the set of examples E, to
define a specific family of GFA problems: GE = (G,SL),
where G = (N , Σ, S, δ ) is an LIA+ grammar. For simplicity,
we use notation SL for both the semilattice and its domain

In the terminology of abstract interpretation, SL is an ab-
stract domain that we can use to represent, for every nonter-
minalX , the set of possible output vectors produced by evalu-
ating each term in LG (X ) on the examples in E. Moreover, the
representation is exact; i.e.,γ (mGE (X )) = {JeKE | e ∈ LG (X )}
where γ denotes the usual operation of concretization.

Definition 5.4 (Semi-linear Set). A linear set

⟨®u, { ®v1, · · · , ®vn}⟩ denotes the set of integer vectors
{®u + λ1 ®v1 + · · · + λn ®vn | λ1, . . . , λn ∈ N}, where
®u, ®v1, ..., ®vn ∈ Z

d and d is the dimension of the linear set. A
semi-linear set is a finite union

⋃
i ⟨®ui ,Vi ⟩ of linear sets, also

denoted by {⟨®ui ,Vi ⟩}i .
The concretization of a semi-linear set sl = {⟨®ui ,Vi ⟩}i ,

denoted by γ (sl), is the set of vectors⋃
i

{®ui + λ1,i ®v1,i + · · · + λn,i ®vn,i | λ1,i , . . . , λn,i ∈ N}.

To apply Newton’s method for solving equations
(Lem. 5.2), we need a commutative idempotent semiring
over semi-linear sets. Fortunately, such a semiring exists [5,
§3.4.4], with the operators ⊗, ⊕ and ~ defined as follows:
{⟨®u1,i ,V1,i ⟩}i ⊕ {⟨®u2, j ,V2, j ⟩}j = {⟨®u1,i ,V1,i ⟩}i ∪ {⟨®u2, j ,V2, j ⟩}j

{⟨®u1,i ,V1,i ⟩}i ⊗ {⟨®u2, j ,V2, j ⟩}j =
⋃
i , j

{⟨®u1,i + ®u2, j ,V1,i ∪V2, j ⟩}

({⟨®ui ,Vi ⟩}i )
~ = {⟨®0,

⋃
i

({®ui } ∪Vi )⟩} (13)

The semi-linear sets 0 def
= ∅ and 1 def

= {⟨®0, ∅⟩} are the identity
elements for ⊕ and ⊗, respectively. We use (SL, ⊕) to denote
the complete combine semilattice of semi-linear sets.
We define the GFA problem GE = (G,SL) by giving the

following interpretations to LIA+ operators:
JPlusK#

E (sl1, sl2)= sl1 ⊗ sl2 (14)
JNum(c)K#

E = {⟨⟨c, · · · , c⟩, ∅⟩} (15)
JVar(x)K#

E = {⟨µE (x), ∅⟩} (16)
JNegVar(x)K#

E = {⟨−µE (x), ∅⟩} (17)
Now consider the combine-over-all-derivations value
mGE (X ) =

⊕
e ∈LG (X )JeK

#
E for the grammar-flow-analysis

problem GE . For an arbitrary tree e ∈ LG (X ), in the com-
putation of JeK#

E via Eqns. (14)–(17), there is never any use
of the ⊕ operation of SL. Consequently, the computation
of JeK#

E produces a semi-linear set that consists of a sin-

gle vector—the same vector, in fact, that is produced by
the computation of JeKE shown in Ex. 3.6. In particular,
⊕ two lines above Eqn. (13) preserves singleton sets, and
hence for singleton sets, ⊗ one line above Eqn. (13) emu-
lates JPlusKE . Therefore, the combine-over-all-derivations
value mGE (X ) =

⊕
e ∈LG (X )JeK

#
E is exactly the set of vec-

tors {JeKE | e ∈ LG (X )}. In other words,mGE (X ) is an ex-

act abstraction of the J·KE semantics of the terms in LG (X ),
i.e., γ (mGE (X )) = {JeKE | e ∈ LG (X )}. Because JPlusK#

E is
infinitely distributive over ⊕ ([10, Defn. 2.1 and §2.3.3]),
mGE (X ) = nGE (X ) holds by Thm. 4.3, and thus we can com-
putemGE (X ) by solving a set of equations in which, for each
X0 ∈ N , there is an equation of the form

nGE (X0)=
⊕

X0→д(X1, ...,Xk )∈δ

JдK#
E (nGE (X1), . . . ,nGE (Xk )). (18)

Example 5.5. Consider again the LIA+ grammar G1 from
Eqn. (1), written out in the expanded form given in footnote 1.
Let E be {1, 2}, and thus µE (x) = ⟨1, 2⟩. The equation system
for the GFA problem G1E is as follows:
nG1E (Start) = nG1E (S1) ⊗ nG1E (Start) ⊕ {⟨(0, 0), ∅⟩}
nG1E (S1) = nG1E (S2) ⊗ {⟨(1, 2), ∅⟩}
nG1E (S2) = nG1E (S3) ⊗ {⟨(1, 2), ∅⟩} nG1E (S3) = {⟨(1, 2), ∅⟩}
which has the solution
nG1E (Start) = {⟨(0, 0), {(3, 6)}⟩} nG1E (S2) = {⟨(2, 4), ∅⟩}

nG1E (S1) = {⟨(3, 6), ∅⟩} nG1E (S3) = {⟨(1, 2), ∅⟩}.
The concretizations of semi-linear sets in the solution are

γ (nG1E (Start)) = {(0, 0) + λ(3, 6) | λ ∈ N}}
γ (nG1E (S1)) = {(3, 6)} γ (nG1E (S2)) = {(2, 4)}
γ (nG1E (S3)) = {(1, 2)}.

The following proposition shows that the equations gen-
erated in Eqn. (18) can be solved using Newton’s method.

Proposition 5.6. (SL, ⊕, ⊗, 0, 1) is a commutative, idempo-

tent, ω-continuous semiring.
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For a semi-linear set sl = {⟨®ui ,Vi ⟩i }, let its size be
∑

i (|Vi |+
1). Given an LIA grammar , a finite set of examples E and a
nonterminal X ∈ N , the semi-linear set nGE (X ) yielded by
NPA can contain exponentially many linear sets [15].

5.4 Checking Unrealizability

We now show how symbolic concretization for SL can be
used to prove that no element ®o in nG(Start) satisfies the
specification ψ E (®o) of the SyGuS problem. The logic LIA
supports symbolic concretization for SL. For instance, for
a linear set {⟨®u, { ®v1, . . . , ®vn}⟩}, its symbolic concretization
γ̂ (⟨®u, { ®v1, . . . , ®vn}⟩, ®o) is defined as follows:

∃λ1 ∈ N, . . . , λn ∈ N.(®o = ®u + λ1 ®v1 + · · · + λn ®vn).

Thus, the symbolic concretization for a semi-linear set is:

γ̂ ({⟨®ui ,Vi ⟩}i , ®o)
def
=
∨
i

γ̂ (⟨®ui ,Vi ⟩, ®o). (19)

Note that ®o is shared among all disjuncts.
Our decidability result follows directly from Thm. 4.5.

Theorem 5.7. Given an LIA SyGuS problem sy and a finite

set of examples E, it is decidable whether the SyGuS problem
syE is realizable.

6 Proving Unrealizability of CLIA SyGuS

Problems with Examples

In this section, we instantiate the framework from §4 to ob-
tain a decision procedure for realizability of SyGuS problems
in conditional linear integer arithmetic (CLIA), where the
specification is given by examples. The decision procedure
follows the same steps as the one for LIA in §5. The main dif-
ference is a technique for solving equations generated from
grammars that involve both Boolean and integer operations.

6.1 Conditional Linear Integer Arithmetic

The grammar of all CLIA terms is the following:
TZ ::= IfThenElse(TB,TZ,TZ) | Plus(TZ,TZ)

| Minus(TZ,TZ) | Num(c) | Var (x)
TB ::= And(TB,TB) | Not(TB) | LessThan(TZ,TZ)

where c ∈ Z is a constant and x ∈ V is a input variable to
the function being synthesized. Notice that the definitions
of TZ and TB are mutually recursive. The example grammar
presented in Eqn. (5) in §2 is a CLIA grammar.
We now define the semantics of CLIA terms. Given an

integer vector ®v ∈ Zd and a Boolean vector ®b ∈ Bd , let
proj®Z(®v,b) be the integer vector obtained by keeping the
vector elements of ®v corresponding to the indices for which
®b is true, and zeroing out all other elements:

proj®Z(⟨u1, . . . ,ud ⟩, ⟨b1, . . . ,bd ⟩)

= ⟨if(b1) then u1 else 0, . . . , if(bd ) then ud else 0⟩

The semantics of symbols that are not in LIA is as follows:

JIfThenElseKE (®b, ®v1, ®v2) = proj®Z( ®v1, ®b) + proj®Z( ®v2,¬®b)

JNotKE (®b) = ¬®b JAndKE ( ®b1, ®b2) = ®b1 ∧ ®b2
JLessThanKE ( ®v1, ®v2) = ®v1 < ®v2

where the operations +, ∧, <, and ¬ are performed element-
wise—e.g., ®u < ®v = ⟨b1, . . . ,bn⟩ such that bi ⇔ ui < vi .

Similarly to what we did in §5.2, any CLIA grammar G
can be rewritten into an equivalent CLIA+ grammar h(G)
that does not contain any occurrences of Minus, but may
contain the symbol NegVar.
The rest of the section is organized as follows. First, we

present the abstract domains used to represent Boolean and
integer terms (§6.2). Second, we show how to compute an
exact abstraction of Boolean nonterminals in grammars with-
out IfThenElse (§6.3). Third, we show how to solve SyGuS
problems with CLIA grammars containing arbitrary opera-
tors, in particular IfThenElse and mutual recursion (§6.4).

6.2 Abstract Semantics for CLIA

We use sets of Boolean vectors as the abstract domain for
Boolean nonterminals, and semi-linear sets as the abstract do-
main for integer nonterminals. We use b to denote a Boolean
vector and bset to denote sets of Boolean vectors.

Given a semi-linear set sl∈SL and a Boolean vector ®b∈Bd ,
let projSL(sl, ®b) be the semi-linear set obtained by zeroing
out elements at all index positions for which ®b is false:

projSL({⟨®ui ,Ωi ⟩}i , ®b) = {projS(⟨®ui ,Ωi ⟩, ®b)}i
projS(⟨®u, { ®v1, ..., ®vn}⟩, ®b) = ⟨proj®Z(®u, ®b), {proj®Z(®vi , ®b)}i ⟩
Next, we lift the concrete semantics to semi-linear sets

and define the abstract semantics of CLIA operators.
JIfThenElseK#

E (bset, sl1, sl2) =⊕
®b ∈bset projSL(sl1, ®b) ⊗ projSL(sl2,¬®b)

JLessThanK#
E (sl1, sl2) = {v1<v2 | v1 ∈ sl1,v2 ∈ sl2}

JNotK#
E (bset) =

⋃
®b ∈bset{¬

®b}

JAndK#
E (bset1, bset2) =

⋃
®b1∈bset1, ®b2∈bset2

{ ®b1 ∧ ®b2}

Operationally, the semantics of the LessThan symbol can
be implemented using an SMT solver. As shown in §5.4, a
semi-linear set sl can be symbolically concretized as a for-
mula γ̂ (sl, ®o) in LIA (a decidable SMT theory). Therefore,
the set JLessThanK#

E (sl1, sl2) = bset can be computed by per-
forming 2 |E | SMT queries—i.e., for every Boolean vector
®b = ⟨b1, . . . ,b |E |⟩, we have that ®b ∈ bset iff the following
formula is satisfiable: γ̂ (sl1, ®o1) ∧ γ̂ (sl2, ®o2) ∧ ®b = ®o1 < ®o2.
Similarly to how we defined J·K#

E for multisorted terms,
we overload ⊕ as the union of sets of Boolean vectors, and
define a multisorted semilattice DCLIA+ := (2B ⊎ SL, ⊕)
over sets of Boolean vectors and semi-linear sets. We use
GCLIA+
E := (G,DCLIA+ ) to denote the GFA problem for a

CLIA+ grammar G and finitely many examples E. GCLIA+
E is

an exact abstraction of the semantics of CLIA+ grammars.
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6.3 CLIA Equations without Mutual Recursion

A CLIA grammar G contains Boolean and integer nontermi-
nals. A nonterminal X is a Boolean nonterminal if JX K ∈ B,
and is an integer nonterminal if JX K ∈ Z. In this subsection,
we assume that there exists no mutual recursion, i.e., G con-
tains no IfThenElse productions. Under this assumption, the
only operator that connects Boolean nonterminals and inte-
ger nonterminals is LessThan, and hence no Boolean nonter-
minal appears in the productions of an integer nonterminal.
Therefore, we can proceed by first solving the equations that
involve integer nonterminals, using the technique presented
in §5.1, and then plugging the corresponding values into the
equations that involve Boolean nonterminals. After this step,
we are left with a set of equations eqsB that involve only
Boolean nonterminals and Boolean symbols. Because the
domain of sets of Boolean vectors is finite, the least fixed
point of eqsB can be found using an algorithm that itera-
tively computes finer under-approximations of nGCLIA+

E
as

nk
GCLIA+
E

—i.e., the under-approximation at iteration k—until it
reaches the least fixed point, which—by Thm. 4.3—is an exact
abstraction. This algorithm terminates in at most 2 |E | |NB |
iterations because the set of Boolean vectors has size at most
2 |E | , and each iteration adds at least one Boolean vector to
one of the variables until the least fixed point is reached.

6.4 CLIA Equations with Mutual Recursion

We have seen how to compute exact abstractions for gram-
mars without mutual recursion, for both integer (§5.3) and
Boolean (§6.3) nonterminals. In this section, we show how
to handle grammars that involve IfThenElse symbols, which
introduce mutual recursion between Boolean and integer
nonterminals. See Eqn. (7) in §2 for an example of equations
that involve mutual recursion. To solve mutually recursive
equations, we cannot simply compute the abstraction for one
type and use the corresponding values to compute the ab-
straction for the other type, like we did in §6.3. However, we
show that if we repeat such substitutions in an iterative fash-
ion, we obtain an algorithm SolveMutual that computes
an exact abstraction for a grammar with mutual recursion.
At the k-th iteration, for every nonterminal X , the al-

gorithm computes an under-approximation nk
GCLIA+
E
(X ) of

nGCLIA+
E
(X ). Initially, n-1

GCLIA+
E
(X ) = 0 for all nonterminals X of

type Z. At iteration k ≥ 0 the algorithm does the following:

Step 1. Replace each integer nonterminalZ with the value
nk-1
GCLIA+
E
(Z ) from iteration k-1 and use the technique in §6.3

to compute nk
GCLIA+
E
(B) for each Boolean nonterminal B.

Step 2. Replace each Boolean nonterminal B with the
valuenk

GCLIA+
E
(B) from Step 1 and computenk

GCLIA+
E
(Z ) for each

integer nonterminal Z (see Eqn. (8) in §2 for an example).

The equations obtained at Step 2 only contain integer
nonterminals, but they may contain IfThenElse symbols for
which the abstract semantics is not directly supported by the
equation-solving technique presented in §5.1. In the rest of
this section, we present a way to transform the given set of
equations into a new set of equations that faithfully describes
the abstract semantics of IfThenElse symbols, using only ⊗
and ⊕ operations over semi-linear sets.
The iterative algorithm SolveMutual is guaranteed to

terminate in |N |2 |E | iterations.

JIfThenElseK#
E using Semi-Linear-Set Operations. In

this section, we show how to solve equations that involve
IfThenElse symbols. Recall the definition of the abstract
semantics of IfThenElse symbols:

JIfThenElseK#
E (bset, sl1, sl2) =

⊕
b ∈bset

projSL(sl1,b)

⊗ projSL(sl2,¬b)
In the rest of this section, we show how equations that

involve the semantics of IfThenElse symbols can be rewritten
into equations that involve only ⊕ and ⊗ operations, so
that they can be solved using Newton’s method. For every
possible Boolean vector b, the new set of equations contains
a new variable nk

GCLIA+
E
(Xb ), so that the solution to the set of

equations for this variable is projSL(nkGCLIA+
E
(X ),b).

Let eqs be a set of equations over a set of integer nonter-
minals N . We write x/y to denote the substitution of every
occurrence of x with y. We generate a set of equations eqs′

over the set of variables NBd as follows. For every equation
nk
GCLIA+
E
(X ) =

⊕
i αi in eqs and b ∈ Bd , there exists an equa-

tion nk
GCLIA+
E
(Xb ) =

⊕
i πb (αi ) in eqs

′, where πb applies the
following substitution in this order:
1. For everyX ∈ N andb ′ ∈ Bd , πb applies the substitution

projSL(nkGCLIA+
E
(X ),b ′)/nk

GCLIA+
E
(Xb∧b′).

2. For every X ∈ N , πb applies nk
GCLIA+
E
(X )/nk

GCLIA+
E
(Xb ).

3. For any semi-linear set sl appearing in eqs, πb applies
the substitution sl/projSL(sl,b). Because sl is a constant,
this substitution yields a constant semi-linear set.

Example 6.1. Figure 1 illustrates how Eqn. (8) is rewritten
into Eqns. (9). We omit equations for variables n12,E (Start

{f,f})

and n12,E (Start
{t,f}) because they do not contribute to the

solving of n12,E (Start
{t,t}). After expanding the definition of

JIfThenElseK#, we apply the substitutions to obtain Eqns. (9).
Substitution 2 is not applied because there are no variables
of the form n12,E (X ) after applying substitution 1.

6.5 Checking Unrealizability

Using the symbolic-concretization technique described in
§5.4 , and the complexities described throughout this section,
we obtain the following decidability theorem.
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n12,E (Start) = JIfThenElseK#
E ({(t, f)}, {(0, 0) + λ(3, 6)},

n12,E (Start)) ⊕ {(0, 0) + λ(2, 4)} ⊕ {(0, 0) + λ(3, 6)}

⇓ Generate equations for Startb

n12,E (Start
(t,t)) = π{t,t}

(
JIfThenElseK#

E ({(t, f)}, {(0, 0) + λ(3, 6)},
n12,E (Start))

)
⊕ π{t,t}

(
{(0, 0) + λ(2, 4)}

)
⊕ π{t,t}

(
{(0, 0) + λ(3, 6)}

)
n12,E (Start

(f,t)) = π{f,t}
(
JIfThenElseK#

E ({(t, f)}, {(0, 0) + λ(3, 6)},
n12,E (Start))

)
⊕ π{f,t}

(
{(0, 0) + λ(2, 4)}

)
⊕ π{f,t}

(
{(0, 0) + λ(3, 6)}

)
⇓ Expand definition of JIfThenElseK#

n12,E (Start
(t,t)) = π{t,t}

(
projSL({(0, 0) + λ(3, 6)}, {f, t})

)
⊗ π{t,t}

(
projSL(n12,E (Start), (f, t))

)
⊕ π{t,t}

(
{(0, 0) + λ(2, 4)}

)
⊕ π{t,t}

(
{(0, 0) + λ(3, 6)}

)
n12,E (Start

(f,t)) = π{f,t}
(
projSL({(0, 0) + λ(3, 6)}, {f, t})

)
⊗ π{f,t}

(
projSL(n12,E (Start), (f, t))

)
⊕ π{f,t}

(
{(0, 0) + λ(2, 4)}

)
⊕ π{f,t}

(
{(0, 0) + λ(3, 6)}

)www� Apply projSL to constants

Apply substitution 1

n12,E (Start
(t,t)) = π{t,t}

(
{(0, 0) + λ(3, 0)}

)
⊗ n12,E (Start

(t,t)∧(f,t))

⊕ π{t,t}
(
{(0, 0) + λ(2, 4)}

)
⊕ π{t,t}

(
{(0, 0) + λ(3, 6)}

)
n12,E (Start

(f,t)) = π{f,t}
(
{(0, 0) + λ(3, 0)}

)
⊗ n12,E (Start

(f,t)∧(f,t))

⊕ π{f,t}
(
{(0, 0) + λ(2, 4)}

)
⊕ π{f,t}

(
{(0, 0) + λ(3, 6)}

)
⇓ Apply substitution 3

n12,E (Start
(t,t)) = {(0, 0) + λ(3, 0)} ⊗ n12,E (Start

(f,t))

⊕ {(0, 0) + λ(2, 4)} ⊕ {(0, 0) + λ(3, 6)}
n12,E (Start

(f,t)) = {(0, 0) + λ(0, 0)} ⊗ n12,E (Start
(f,t))

⊕ {(0, 0) + λ(0, 4)} ⊕ {(0, 0) + λ(0, 6)}

Figure 1. Rewriting Eqn. (8) into Eqns. (9).

Theorem 6.2. Given a CLIA SyGuS problem sy and a finite

set of examples E, it is decidable whether the SyGuS problem
syE is (un)realizable.

7 Implementation

We implemented a tool nay that can return two-sided an-
swers to unrealizability problems of the form sy = (ψ ,G).
When it returns unrealizable, no term in L(G) satisfies ψ ;
when it returns realizable, some e ∈ L(G) satisfies ψ ; nay
can also time out. nay consists of three components: 1) a veri-
fier (the SMT solver CVC4 [3]), which verifies the correctness
of candidate solutions and produces counterexamples, 2) a
synthesizer (ESolver—the enumerative solver introduced in
[2]), which synthesizes solutions from examples, and 3) an
unrealizability verifier, which proves whether the problem
is unrealizable on the current set of examples.
Alg. 2 shows nay’s CEGIS loop. Given a SyGuS problem

sy = (ψ ,G), nay first initialize E with a random input exam-
ple with values in the range [−50, 50](line (1)), and then, in

parallel, 1 calls ESolver to find a solution of syE (line (4)),
and 2 uses grammar flow analysis (Alg. 1) to decide whether
syE∪Er is unrealizable (line (11)), where Er is a set of ran-
domly generated temporary examples. Randomly generated
examples are used when the problem is proven to be re-
alizable by GFA, but we do not have a candidate solution
e∗—ESolver did not return yet—that can be used to issue
an SMT query to possibly obtain a counterexample. During
each CEGIS iteration, the following three events can happen:
1) If GFA returns unrealizable, nay terminates and outputs
unrealizable (line (16)). 2) If GFA returns realizable, nay adds
a temporary random example to Er (line (18)), and reruns
GFA with E ∪ Er . 3) If ESolver returns a candidate solution
e∗, the problem syE is realizable. (ESolver never uses the
temporary random examples.) Therefore, nay kills the GFA
process and then issues an SMT query to check if e∗ is a
solution to the SyGuS problem sy (line (6)): if not, nay adds
a counterexample to E (line (7)) and triggers the next CEGIS
iteration, otherwise, nay return e∗ as a solution to the given
SyGuS problem sy (line (10)).
nay currently has two modes: nayHorn and naySL .
nayHorn implements the constrained-Horn-clauses tech-

nique for solving equations presented in §4.3, and uses Z3’s
Horn-clause solver, Spacer [8], to solve the Horn clauses.
naySL implements the decision procedures presented in

§5 and §6 for solving LIA and CLIA problems. naySL also
implements two optimizations: (i) naySL eagerly removes
a linear set from a semi-linear set whenever it is trivially
subsumed by another linear set; and (ii) naySL uses the
optimization presented in the following paragraph.

Algorithm 2: CEGIS with random examples
Function :Nay(G,ψ )
Input: Grammar G, specificationψ

1 i ← Random(−50, 50) Set of examples E ← {i}
2 while True do
3 do in parallel

4 1 {e∗ ←ESolver(G,ψ , E)
5 kill 2

6 if ∃icex .¬ψ (Je∗K, icex ) then
7 E ← E ∪ {icex }

8 continue

9 else

10 return e∗ }
11 2 { Er ← ∅
12 while True do
13 result ←CheckUnrealizable(G,ψ , E ∪ Er )
14 if result =Unrealizable then
15 kill 1

16 return Unrealizable
17 i ← Random(−50, 50)
18 Er ← Er ∪ {i}

19 continue }
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Solving GFA Equations via Stratification. The nG
equations (Eqn. (11)) that arise in a GFA problem are
amenable to the standard optimization technique of iden-
tifying “strata” of dependences among nonterminals, and
solving the equations by finding values for nonterminals of
lower “strata” first, working up to higher strata in an order
that respects dependences among the equations.
This idea can be formalized in terms of the strongly con-

nected components (SCCs) of a dependence graph, defined
as follows: the nodes are the nonterminals of G; the edges
represent the dependence of a left-hand-side nonterminal on
a right-hand-side nonterminal. For instance, ifG has the pro-
ductions X0 → д(X1,X2) | h(X2,X3), then the dependence
graph has three edges into node X0: X1 → X0, X2 → X0, and
X3 → X0. There are three steps to finding an order in which
to solve the equations:
• Find the SCCs of the dependence graph.
• Collapse each SCC into a single node, to form a directed
acyclic graph (DAG).
• Find a topological order of the DAG.

The set of nonterminals associated with a given node of
the DAG corresponds to one of the strata referred to earlier.
The equation solver can work through the strata in any
topological order of the DAG.

8 Evaluation

In this section, we evaluate the effectiveness and perfor-
mance of naySL and nayHorn.5

Benchmarks. We perform our evaluation using 132 vari-
ants of the 60 CLIA benchmarks from the CLIA SyGuS com-
petition track [2]. These benchmarks are the same ones used
in the evaluation of the tool we compare against, nope [11],
which like nay only supports LIA and CLIA SyGuS problems.

The benchmarks are divided into three categories, and
arise from a tool used to synthesize terms in which a certain
syntactic feature appears a minimal number of times [13].
LimitedPlus (resp. LimitedIf) contains 30 (resp. 57) bench-
marks in which the grammar bounds the number of times a
Plus (resp. IfThenElse) operator can appear in an expression-
tree to be one less than the number required to solve the orig-
inal synthesis problem. LimitedConst contains 45 bench-
marks that restrict what constants appear in the grammar.
In each of the benchmarks, the grammar that specifies the
search space generates infinitely many terms.

8.1 Effectiveness of nay

EQ 1. How effective is nay at proving unrealizability?

5All the experiments were performed on an Intel Core i7 4.00GHz CPU, with
32GB of RAM. We used version 1.8 of CVC4 and commit d37c50e of ESolver.
The timeout for each individual nay/ESolver call is set at 10 minutes.

Table 1. Performance of nay and nope for LimitedIf and
LimitedPlus benchmarks.6 The table shows the number of
nonterminals (|N |), productions (|δ |), and variables (|V |) in
the problem grammar; the number of examples required to
prove unrealizability (|E |); and the average running time of
naySL , nayHorn, and nope. ✗ denotes a timeout.

Problem

Grammar

|E |
time (s)

|N | |δ | |V | naySL nayHorn nope

Li
m
it
ed

Pl
us

guard1 7 24 3 2 0.24 ✗ ✗

guard2 9 34 3 3 12.86 ✗ ✗

guard3 11 41 3 1 0.07 ✗ ✗

guard4* 11 72 3 3.5 147.50 ✗ ✗

plane1 2 5 2 1 0.07 0.55 0.69
plane2 17 60 2 1.6 0.90 ✗ ✗

plane3 29 122 2 1.5 15.73 ✗ ✗

ite1* 7 2 3 2 1.05 ✗ ✗

ite2* 9 34 3 4 294.88 ✗ ✗

sum_2_5 11 40 2 4 15.48 ✗ ✗

search_2 5 16 3 3 1.21 ✗ ✗

search_3 7 25 4 4 2.65 ✗ ✗

Li
m
it
ed

If

max2 1 5 2 4 0.13 1.13 1.48
max3 3 15 3 - ✗ 9.67 58.57

sum_2_5 1 5 2 3 0.17 0.61 0.69
sum_2_15 1 5 2 3 0.17 0.56 0.87
sum_3_5 3 15 3 - ✗ 17.85 101.44
sum_3_15 3 15 3 - ✗ 16.65 134.87
search_2 3 15 3 - ✗ 25.85 112.78
example1 3 10 2 3 0.14 0.73 1.12
guard1 1 6 2 4 0.13 0.44 0.43
guard2 1 6 2 4 0.22 0.33 0.49
guard3 1 6 2 4 0.16 0.27 0.46
guard4 1 6 2 4 0.11 0.72 0.58
ite1 3 15 3 - ✗ 2.68 369.57

We compare naySL and nayHorn against nope, the state-
of-the-art tool for proving unrealizability of SyGuS prob-
lems [11]. For each benchmark, we run each tool 5 times
on different random seeds, therefore generating different
random sets of examples, and report whether a tool success-
fully terminated on at least one run. This process guarantees
that all tools are evaluated on the same final example set
that causes a problem to be unrealizable. Table 1 shows the
results for the LimitedPlus and LimitedIf benchmarks that
at least one of the three tools could solve. Because both tools
use a CEGIS loop to produce input examples, only the last
iteration of CEGIS is unrealizable. For naySL and nope, that
iteration is the one that dominates the runtime. On aver-
age, it accounts for 60.4% of the running time for naySL
and 90.3% for nope, but only 8.3% for nayHorn. (For nayHorn,
counterexample generation is the most costly step.) The Lim-
itedConst benchmarks could be solved by all tools, and
results are given in the supplementary material.

6 We discovered that three of the benchmarks from [11] were actually
realizable (marked with *). Because these benchmarks were created by
bounding the number of Plus operators, we further reduced the bound by
one to make them unrealizable.
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Findings. naySL solved 70/132 benchmarks, with an av-
erage running time of 1.97s.nayHorn and nope solved iden-
tical sets of 59/132 benchmarks, with an average running
time of 0.63s and 15.59s, respectively. All tools can solve all
the LimitedConst benchmarks with similar performance.
These benchmarks are easier than the other ones.

naySL can solve 11 LimitedPlus benchmarks that nope
cannot solve. These benchmarks involve large grammars, a
known weakness of nope (see [11]). In particular, NaySL can
handle grammars with up to 29 nonterminals while Nope
can only handle grammars with up to 3 nonterminals. For 8
benchmarks, naySL only terminated for some of the random
runs (certain random seeds triggered more CEGIS iterations,
making the final problem harder for nay to solve).
nope solved 5 LimitedIf benchmarks that naySL can-

not solve. nope solves these benchmarks using between 7
and 9 examples in the CEGIS loop. Because the size of the
semi-linear sets computed by naySL depends heavily on the
number of examples, naySL only solves benchmarks that
require at most 4 examples. §8.2 analyzes the effect of the
number of examples on naySL ’s performance. When naySL
terminated, it took 1 to 15 iterations (avg. 6.6) to find a fixed
point for IfThenElse guards, and the final abstract domain of
each guard contained 2 to 16 Boolean vectors (avg. 5.9). On
average, the running time for computing semi-linear sets is
70.6% of the total running time. On the benchmarks that all
tools solved, all tools terminated in less than 2s.
nayHorn and nope solved exactly the same set of bench-

marks. This outcome is not surprising becausenope uses Sea-
Horn, a verification solver based on Horn clauses that builds
on Spacer, which is the constrained-Horn-clause solver used
by nayHorn. nayHorn directly encodes the equation-solving
problem, while nope reduces the unrealizability problem to a
verification problem that is then translated into a potentially
complex constrained-Horn-clause problem. For this reason,
nayHorn is on average 19 times faster than nope. On bench-
marks for which nope took more than 2 seconds, nayHorn is
82x faster than nope (computed as the geometric mean).
The reason we use random examples in Alg. 2 is that

there is a trade-off between the size of solutions and the
number of examples when we are proving the realizability of
SyGuS-with-examples problems. On the one hand, ESolver
is not affected by the number of examples, and can efficiently
synthesize a solution when a small solution exists. On the
other hand the time required to prove realizability by naySL
only depends on the size of grammars and the number of
examples but not on the size of solutions. For the realizable
SyGuS-with-examples problems produced during the CEGIS
loop of our experiments, ESolver terminates on average in 1.9
seconds when there exists a solution with size no more than
10, but terminates on average in 54.5 seconds when there
exists a solutionwith size greater than 10 (the largest solution
has size 24). For the same problems, naySL could not prove
realizability for problems with more than 5 examples, but it

5 10 15 20 25
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Figure 2. Time to compute semi-linear set vs. |N |.

did prove realizability for 7 problems on which ESolver failed.
On the problems both ESolver and naySL solved, ESolver is
87% faster than naySL calculated as a geometric mean.
To answer EQ 1: if both nay techniques are considered

together, nay solved 11 benchmarks that nope did not solve,

and was faster on the benchmarks that both tools solved.

8.2 The Cost of Proving Unrealizability

EQ 2. How does the size of the grammar and the number
of examples affect the performance of different solvers?

Finding. First, consider naySL : when we fix the number
of examples (different marks in Fig. 2), the time taken to
compute the semi-linear set grows roughly exponentially.
Also, the time grows roughly exponentially with respect to
2 |E | .

nayHorn and nope (shown in Fig. 3 and Fig. 4, respectively)
can only solve benchmarks involving up to 3 nonterminals.
When we fix the number of nonterminals, the running time
of these two tools grows roughly exponentially with respect
to the number of examples.

To answer EQ 2: the running time of naySL grows expo-
nentially with respect to |N |2 |E | , and the running time of
nayHorn and nope grows exponentially with respect to |E |.

8.3 Effectiveness of Grammar Stratification

EQ 3. Is the stratification optimization from §7 effective?

Finding. Using stratification, naySL can compute the
semi-linear sets for 9 benchmarks for which naySL times out
without the optimization. On benchmarks that take more
than 1s to solve, the optimization results on average in a
3.1x speedup. To answer EQ 3: the grammar-stratification
optimization is highly effective.
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Figure 3. Running time of nayHorn vs. number of examples.

9 Related Work

Unrealizability in SyGuS. Several SyGuS solvers compete in
yearly SyGuS competitions [2], and can produce solutions
to SyGuS problems when a solution exists. If the problem is
unrealizable, these solvers only terminate if the language of
the grammar is finite or contains finitely many functionally
distinct programs, which is not the case in our benchmarks.
nope [11], the tool we compare against in §8, is the only

tool that can prove unrealizability for non-trivial SyGuS
problems. nope reduces the problem of proving unrealiz-
ability to one of proving unreachability in a recursive non-
deterministic program, and uses off-the-shelf verifiers to
solve the unreachability problem. Unlike nay, nope does
not provide any insights into how we can devise specialized
techniques for solving unrealizability, because nope reduces
a constrained SyGuS problem to a full-fledged program-
reachability problem. In contrast, the approach presented
in this paper gives a characterization of unrealizability in
terms of solving a set of equations. Using the equation-
solving framework, we provided the first decision procedures

for LIA and CLIA SyGuS problems over examples. More-
over, the equation-based approach allows us to use known
equation-solving techniques, such as Newton’s method and
constrained Horn clauses.
Unrealizability in Program Synthesis. For certain synthesis
problems—e.g., reactive synthesis [4]—realizability is decid-
able. However, SyGuS is orthogonal to such problems.

Mechtaev et al. [16] propose to use unrealizability to prune
irrelevant paths in symbolic-execution engines. The synthe-
sis problems generated by Mechtaev et al. are not directly
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Figure 4. Running time of nope vs. number of examples.

expressible in SyGuS. Moreover, these problems are decid-
able because they can be encoded as SMT formulas.
Abstractions in Program Synthesis. SYNGAR [22] uses pred-
icate abstraction to prune the search space of a synthesis-
from-examples problem. Given an input example i and a
regular-tree grammar A representing the search space, SYN-
GAR builds a new grammar Aα in which each nonterminal
is a pair (q,a), where q is a nonterminal of A and a is a pred-
icate of a predicate-abstraction domain α . Any term that can
be derived from (q,a) is guaranteed to produce an output
satisfying the predicate a when fed the input i . Aα is con-
structed iteratively by adding nonterminals in a bottom-up
fashion; it is guaranteed to terminate because the set α is
finite. SYNGAR can be viewed as a special case of our frame-
work in which the set of values nG(X ) is based on predicate
abstraction (see §4.3). SYNGAR’s approach is tied to finite
abstract domains, while our equational approach extends to
infinite domains—e.g., semi-linear sets—because it does not
specify how the equations must be solved.
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