
Guarantees in Program Synthesis

Qinheping Hu
1
, Jason Breck

1
, John Cyphert

1
,

Loris D’Antoni
1
, Thomas Reps

1,2

1
University of Wisconsin-Madison, Madison, USA

2
GrammaTech, Inc., USA

1 Introduction

Program synthesis is the classic problem of automatically

finding a program implementation in some search space

that satisfies a given correctness specification. Traditionally,

program synthesis is viewed as a deductive theorem proving

problem [5, 12, 15] with specifications written in logic. More

recently, studies on program synthesis problems with input-

output examples [6, 8, 11] or user-specified search space

[1, 13] propel program synthesis to more practical fields.

Although in general program synthesis is an exception-

ally challenging problem, synthesis even in a relatively small

scale can significantly impact software development in the

sense that it reduces programmers’ efforts to produce pro-

grams with concise intuition but daunting detail. For ex-

ample, let’s say we are synthesizing a program f , that in-
verts two given program д1 (x) := (E (bvshr x #x06)) and
д1 (x) := (E (bvshl x #x02)), where E is an encoding map

function. The specification φ := ∀x . f (д1 (x),д2 (x)) = x is

straightforward. A reliable synthesis tool may save us from

tedious work of writing and debugging an implementation of

f such as (bvor (bvshl (D y1) #x06) (bvshr (D y1) #x02))
where D is the provided decoding map function.

Unfortunately, it is usually not enough to produce any cor-

rect solution. For many program synthesis problems, there

are multiple correct solutions in the search space, but some

of them are not usable because, for example, their sizes are

too large to be read. At the same time, synthesizers are

unpredictable–users have no way to prefer one correct so-

lution over others. Thus, sometimes synthesizers may pro-

duce a correct but unusable solution. For the example we

mentioned above, the implementation of f returned by the

state-of-the-art synthesis tool CVC4 is a lookup table with

hundreds of ITE operators, and hence, is unreadable. Besides,
when the search space is infinite, most of the synthesizers

can only output a solution or timeout on the given synthesis

problem. That is, when a solver timeouts, users know noth-

ing about whether the solving is not finished, or the given

synthesis problem is unrealizable–no solution in the search

space satisfies the correctness specification.

Therefore, besides correctness and efficiency, one may

want ask two more questions about a synthesis solver.

Question 1. Can the solver provide a good solution when

there are multiple ones?

Question 2. Can the solver provide any information

when there is no solution?

To answer the above two questions, we introduce two

types of guarantees in program synthesis: quantitative objec-

tives and the ability to answer unrealizable. The quantitative

objectives extend the dimension of specifications in pro-

gram synthesis–users can desire not only correct but also,

for example, more efficient, more readable or more proba-

ble solutions. The ability to answer unrealizable guarantees

users to get more information from synthesizers–they will

return not only a solution but also explain why the solution

is optimal or why the synthesis problem is unrealizable.

For each type of guarantees, we introduce a published

work to see how to introduce guarantees into program syn-

thesis and how to solve the synthesis problems with guaran-

tees. Besides, there are still many more interesting topics and

questions worth to be explored in the future. We presented

some of them as future directions at the end of each section.

2 Quantitative Objectives

Quantitative objectives provide a natural way to guaran-

tee users more preferable solutions. In this section, we first

show our previous work [10] addressing Question 1 for Sy-

GuS problems and then show some future directions about

quantitative objectives in synthesis problems.

2.1 SyGuS with Quantitative Syntactic Objectives

The goal of this work is to extend syntax guided synthe-

sis (SyGuS) to SyGuS with quantitative syntactic objectives

(QSyGuS) [10], a unifying framework for describing SyGuS

problems with syntactic quantitative objectives–e.g., find the

minimal solution–and present an algorithm for solving syn-

thesis problems expressed in this framework. We focus on

syntactic objectives because they are the most common ones

in practical applications of program synthesis. For example,

in programming by examples it is desirable to produce small

pro- grams with fewer constants because these programs

are more likely to generalize to examples outside of the

specification [7]. QSyGuS extends SyGuS in two ways. First,

in QSyGuS the search space is represented using weighted

grammars, which augment context-free grammars with the

ability to assign weights to programs. Second, QSyGuS al-

lows the user to specify constraints over the weight of the

solution, including optimization objectives—e.g., find the

program with the fewest ITE-operators.
We illustrate QSyGuS problems and an algorithm to solve

QSyGuS problems by a simple example. We start with a

1

March 2019, Madison, USA

Start→ Start + Start/0
| ITE(BExpr, Start, Start)/1
| x/0 | y/0 | 0/0 | 1/0

BExpr→ Start > Start/0
| ¬BExpr/0
| BExpr ∧ BExpr/0

Figure 1.Weighted grammar that assigns weightw ∈ Nat
to a program wherew is the number of ITE-operators.

Syntax-Guided Synthesis (SyGuS) problem in which no quan-

titative objective is provided. Recall that the goal of a Sy-

GuS problem is to synthesize a function f of a given type

that is accepted by a context-free grammar G, and such that

∀x .ϕ (f ,x) holds (for a given Boolean constraint ϕ).
The following SyGuS problem asks to synthesize a func-

tion that is accepted by the following grammar and that

computes the max of two numbers.

Start→ Start + Start | ITE(BExpr, Start, Start) | x | y | 0 | 1
BExpr→ Start > Start | ¬BExpr | BExpr ∧ BExpr

The semantic constraint is given by the following formula.

ψ (f)
def

= ∀x ,y. f (x ,y) ≥ x∧f (x ,y) ≥ y∧(f (x ,y) = x∨f (x ,y) = y)

The following two programs are semantically equivalent, but

syntactically different solutions.

max1 (x ,y) = ITE(x > y,x ,y)
max2 (x ,y) = ITE(x > y,x , ITE(y > x ,y,x))

All solutions are correct, but the user might, for example,

prefer the smallest one. However, SyGuS does not provide

ways to specify this quantitative intent.

Adding weights. In our formalism, QSyGuS, we augment

context-free grammars to assign weights to programs in the

search space. Concretely, we adopt weighted grammars [4],

a well-studied formalism with many desirable properties. In

a weighted grammar, each production is assigned a weight.

For example, the weighted grammar shown in Figure 1 ex-

tends the one from the previous SyGuS example to assign

to each program p a weight w where w is the number of

ITE-operators in p. In this case, the weight is an integer and

the weight of a grammar derivation is the sum of all the

weights of the productions involved in the derivation. In the

figure, we write /w to assign weightw to a production. The

functionsmax1 andmax2 have weights 1 and 2 respectively.

Adding and solving quantitative objectives. Once we have a

way to assign weights to programs, QSyGuS allows the user

to specify quantitative objectives over the weights of the

productions—e.g., only allow solutions with fewer than 2

ITE-operators. In our example, we could require the solution

to be minimal with respect to the number of ITE-operators,
i.e., minimize the first component of the paired weight. With

these constraints onlymax1 would be considered optimal so-

lutions because there exists no solution with 0 ITE-operators.
Our tool QuaSi can automatically discover solutions in

both these cases. Let’s consider the last minimization objec-

tive. In this case, QuaSi first uses existing SyGuS solvers to

synthesize an initial solution using the non-weighted version

of the grammar. Let’s say that the returned solution is, for

example,max2 of weight 2.QuaSi uses this solution to build

a new SyGuS instance that only accepts programs with at

most one ITE-operators. The idea behind our construction

is to introduce new nonterminals in the grammar to keep

track of the weight of the trees that can be produced from

those nonterminals. For example, the following grammar

only produce terms with no more than one ITE-operators

Z→ Start_1 | Start_0 Start_0→ x | y | 0 | 1
Start_1→ ITE(BExpr_0, Start_0, Start_0) | x | y | 0 | 1

BExpr_0→ Start_0 > Start_0 | ¬BExpr_0 | BExpr_0 ∧ BExpr_0

Solving this SyGuS problem can, for example, result in the

programmax1 of weight 1, which will require our solver to

build yet another SyGuS instance. This approach is repeated

and if it terminates, an optimal program is found.

2.2 Future Directions

Besides syntactic quantitative objectives, there are other

types of quantitative objectives: quantitative semantic objec-

tives and resource bound objectives.

Quantitative Semantic objectives. When we know a program

synthesis problem is unrealizable, a question naturally arises:

how much of the correct specification we can satisfy on a best

effort? With such objectives, we can find a solution to satisfy,

for example as many as input-output examples as possible.

Such quantitative objectives can also be used to train a neu-

ral network. Another example application is approximation

synthesis [2], which allow us to find an approximate solution

instead of finding a solution to fulfill the correct specification

with a longer solving time.

A natural way to formalize synthesis problem with se-

mantic quantitative objectives is that, instead of only one

correct specification, we allow a program synthesis problem

to contain a set of weight-specification pairs (φi ,wi). And
we define the semantic weight of a solution e as

∑
i [φi (e) =

true]wi . Similar to syntactic quantitative objectives we pre-

sented in QSyGuS, a syntactic objective could be a range of

allowed weight of solutions or a requirement of optimizing

the solutions’ weight.

Resource-bounded program synthesis. Another kind of com-

plicated quantitative objectives we interested in is bounding

the resource used by solutions. Resource usage including

solving time, memory usage and domain-specific resource

metrics has, of course, large impact on the quality of syn-

thesis solutions. This problem is challenging because both

synthesis and resource analysis are undecidable in theory

and expensive in practice.

3 Ability to Answer Unrealizable.

Determining whether there is a solution for the given pro-

gram synthesis problem is challenging because the search

2

March 2019, Madison, USA

space in program synthesis is usually infinite and exhaustive

search will fail in such cases. In this section, we will first

introduce our previews work [9] to answer Question 2 and

then show some future directions on the topic of proving

unrealizability of synthesis problems.

3.1 From Unrealizability to Unreachability

In §2.1, we showed an optimization synthesis algorithm

which iteratively construct SyGuS sub-problems that only ac-

cept solutions with cost than the current solution’s cost. The

soundness of this optimization synthesis depends onwhether

the synthesizers have the ability of answering unrealizable–a

current solution is optimal if the synthesis problem of finding

smaller cost is unrealizable. However, most of the state-of-

the-art SyGuS solver can not prove the unrealizability of

unrealizable SyGuS problems with infinite search space.

In this work, we have introduced a novel SyGuS technique

with the ability to answer unrealizable. Our technique bases

on the Counterexample-Guided Inductive Synthesis (CEGIS)

framework and, in each CEGIS iteration, reduces a SyGuS

sub-problem to a reachability problem that can be proved to

be unrealizable by off-the-shelf program verification solvers.

We illustrate by examples our framework for establishing

the unrealizability of a SyGuS problem.

Again consider the SyGuS problem to synthesize a func-

tion f that computes the maximum of two variables x and

y, denoted by (ψ ,G). The grammar G we provided only pro-

duces terms without ITE-operators.

Start→ Start + Start | x | y | 0 | 1

In fact, this SyGuS problem is unrealizable—i.e., it does not ad-

mit a solution, because no expression generated by G meets

the specification.
1
.

Nowwe show that how the unrealizability of (ψ ,G) can be
proven using input examples: (0, 0), (0, 1), (1, 0), and (1, 1).

Our method can be seen as a variant of Counter-Example-

Guided Inductive Synthesis (CEGIS), in which the goal is

to create a program P in which a certain assertion always

holds. Until such a program is created, each round of the

algorithm returns a counter-example, from which we extract

an additional input example for the original SyGuS problem.

On the ith round, the current set of input examples Ei is
used, together with the grammar—in this case G—and the

specification of the desired behavior—ψ), to create a candi-

date program P[G,Ei]. The program P[G,Ei] contains an
assertion, and a standard program analyzer is used to check

whether the assertion always holds. When the assertion

holds, all possible paths falsify the specification, and hence

the original SyGuS problem is unrealizable. Figure 2 shows

an example of P[G,E1] with example (0, 1), in which we use

an external function nd() for nondeterministically shooting

production rules and each rule is encoded to be a sequence

1
Grammar G only generates terms equivalent to some linear function;

however, the maximum function cannot be described by a linear function.

1 in t I_0;

2 void Start(in t x_0 , in t y_0){

3 i f (nd()){ // Encodes ``Start+ Start)''

4 Start(x_0 ,y_0); in t tempL_0=I_0;

5 Start(x_0 ,y_0); in t tempR_0=I_0;

6 I_0 = tempL_0+tempR_0;}

7 e l se i f (nd()) I_0 = x_0; // Encodes `` x''

8 e l se i f (nd()) I_0 = y_0; // Encodes `` y''

9 e l se i f (nd()) I_0 = 1; // Encodes ``1''

10 e l se I_0 = 0; // Encodes `` 0''

11 }

12 bool spec(in t x, in t y, in t f){

13 return (f>=x && f>=y && (f==x || f==y))}

14 void main(){

15 in t x_0 = 0; in t y_0 = 1; // Example (0,1)

16 Start(x_0 ,y_0);

17 assert (!spec(x_0 ,y_0 ,I_0));

18 }

Figure 2. Program P[G,E1] created during the course of

proving the unrealizability of (ψ ,G) using the set of input

examples E1 = {(0, 1)}.

of statements that evaluates and returns the value of an ex-

pression trees as a global variable I_0. The multi-examples

cases are similar.

3.2 Future Direction

Decidable fragment of SyGuS.We described an approach to

probing unrealizability of SyGuS problems in §3.1 using a

reduction from SyGuS problems to reachability problems.

However, the evaluation result shows that our tool nope

times out on about half of the benchmarks. To address those

time-outing benchmarks, a future direction is to explore the

decidable fragment of SyGuS problems. Decidable fragment

of SyGuS has been studied in previous study [3] but our

benchmarks for nope is not included in the studied domain

in their work.

A preliminary idea is to first summary the grammar in the

decidable fragment and then prove that the summary is dis-

joint from the specification. For example, we may summary

the decision-tree like LIA grammar as a semi-linear set and

then construct an SMT query to check if the specification is

disjoint from the semi-linear set.

Synthesizing imperative programs. The technique used in §3.1

is not restricted in SyGuS framework. This proposed work

aims to generalize the technique used in §3.1 to imperative

programs. The synthesis of imperative programs has been

studied using a deductive approach [14]. Our goal is to build

an synthesizer with the ability to answer unreliable and to

incorporate syntactic quantitative objectives.

The main challenge when using the encoding presented in

§3.1 to encode imperative synthesis problems is the assign-

ment statement. For SyGuS problems, we only care about the

evaluated values of terms while, for imperative program pro-

gram synthesis, we need to also consider program states, e.g.,

when we encode a rule r : S → Concate(Assign(x ,E), S), the
evaluation of E will influence the evaluation of S .

3

March 2019, Madison, USA

References

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MKMartin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,

Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis.

In 2013 Formal Methods in Computer-Aided Design. IEEE, 1–8.

[2] James Bornholt, Emina Torlak, Luis Ceze, and Dan Grossman. 2015.

Approximate Program Synthesis. (2015). https://homes.cs.washington.
edu/~bornholt/papers/appsyn-wax15.pdf

[3] Benjamin Caulfield, Markus N. Rabe, Sanjit A. Seshia, and Stavros

Tripakis. 2015. What’s Decidable about Syntax-Guided Synthesis?

CoRR abs/1510.08393 (2015). http://arxiv.org/abs/1510.08393
[4] Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of

Weighted Automata (1st ed.). Springer Publishing Company, Incorpo-

rated.

[5] Cordell Green. 1981. Application of theorem proving to problem

solving. In Readings in Artificial Intelligence. Elsevier, 202–222.

[6] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In ACM SIGPLAN Notices, Vol. 46. ACM,

317–330.

[7] Sumit Gulwani. 2016. Programming by Examples: Applications, Algo-

rithms, and Ambiguity Resolution. In Automated Reasoning - 8th Inter-

national Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July

2, 2016, Proceedings. 9–14. https://doi.org/10.1007/978-3-319-40229-1_
2

[8] William R Harris and Sumit Gulwani. 2011. Spreadsheet table trans-

formations from examples. In ACM SIGPLAN Notices, Vol. 46. ACM,

317–328.

[9] QinhepingHu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas

Reps. 2019. Proving Unrealizability for Syntax-Guided Synthesis. In

To Appear in Computer Aided Verification Conference, CAV.

[10] Qinheping Hu and Loris D’Antoni. 2018. Syntax-Guided Synthesis

with Quantitative Syntactic Objectives. In International Conference on

Computer Aided Verification. Springer, 386–403.

[11] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010.

Oracle-guided component-based program synthesis. In Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering-

Volume 1. ACM, 215–224.

[12] Zohar Manna and Richard J Waldinger. 1971. Toward automatic pro-

gram synthesis. Commun. ACM 14, 3 (1971), 151–165.

[13] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal

Ebcioğlu. 2005. Programming by sketching for bit-streaming programs.

In ACM SIGPLAN Notices, Vol. 40. ACM, 281–294.

[14] Jamie Stark and Andrew Ireland. 1999. Towards automatic imperative

program synthesis through proof planning. In 14th IEEE International

Conference on Automated Software Engineering. IEEE, 44–51.

[15] Richard J Waldinger and Richard CT Lee. 1969. PROW: A step toward

automatic program writing. In Proceedings of the 1st international joint

conference on Artificial intelligence. Morgan Kaufmann Publishers Inc.,

241–252.

4

https://homes.cs.washington.edu/~bornholt/papers/appsyn-wax15.pdf
https://homes.cs.washington.edu/~bornholt/papers/appsyn-wax15.pdf
http://arxiv.org/abs/1510.08393
https://doi.org/10.1007/978-3-319-40229-1_2
https://doi.org/10.1007/978-3-319-40229-1_2

	1 Introduction
	2 Quantitative Objectives
	2.1 SyGuS with Quantitative Syntactic Objectives
	2.2 Future Directions

	3 Ability to Answer Unrealizable.
	3.1 From Unrealizability to Unreachability
	3.2 Future Direction

	References

